T. Stach , Md Arif Uddin , Uwe Burghaus , Trung T. Pham , Robert Sporken , Abdolvahab Seif , Alberto Ambrosetti , Pier Luigi Silvestrelli
{"title":"Adsorption of ethyl ether on graphene/silicon – Theory and experiment","authors":"T. Stach , Md Arif Uddin , Uwe Burghaus , Trung T. Pham , Robert Sporken , Abdolvahab Seif , Alberto Ambrosetti , Pier Luigi Silvestrelli","doi":"10.1016/j.susc.2025.122808","DOIUrl":null,"url":null,"abstract":"<div><div>Adsorption of ethyl ether, CH<sub>3</sub>CH<sub>2</sub>–O–CH<sub>2</sub>CH<sub>3</sub> (or C<sub>4</sub>H<sub>10</sub>O or (CH<sub>3</sub>CH<sub>2</sub>)<sub>2</sub>O), on graphene/Si(111) (hereafter Gr/Si(111)) was characterized by kinetics (multi-mass thermal desorption spectroscopy (TDS), steady-state rate measurements) and spectroscopic (Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy) techniques as well as by density functional theory calculations (DFT) as a potential metal-free catalyst. TDS results agree with the expected fragmentation pattern of molecular ethyl ether. AES and XPS spectra collected after ethyl ether adsorption are identical with data for pristine Gr/Si(111). Therefore, ethyl ether adsorbs molecularly, consistent with large activation energies for dissociation calculated by the DFT.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"761 ","pages":"Article 122808"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825001153","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adsorption of ethyl ether, CH3CH2–O–CH2CH3 (or C4H10O or (CH3CH2)2O), on graphene/Si(111) (hereafter Gr/Si(111)) was characterized by kinetics (multi-mass thermal desorption spectroscopy (TDS), steady-state rate measurements) and spectroscopic (Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy) techniques as well as by density functional theory calculations (DFT) as a potential metal-free catalyst. TDS results agree with the expected fragmentation pattern of molecular ethyl ether. AES and XPS spectra collected after ethyl ether adsorption are identical with data for pristine Gr/Si(111). Therefore, ethyl ether adsorbs molecularly, consistent with large activation energies for dissociation calculated by the DFT.
通过动力学(多质量热解吸光谱(TDS)、稳态速率测量)、光谱(埃格电子能谱(AES)、x射线光电子能谱(XPS)、拉曼光谱)技术以及密度泛函理论计算(DFT),表征了乙醚CH3CH2 - o - ch2ch3(或C4H10O或(CH3CH2)2O)在石墨烯/Si(111)(以下简称Gr/Si(111))上作为潜在无金属催化剂的吸附特性。TDS结果与预期的乙醚分子断裂模式一致。乙醚吸附后收集的AES和XPS光谱与原始Gr/Si(111)的数据一致。因此,乙醚在分子上吸附,这与DFT计算的解离活化能大一致。
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.