Surface SciencePub Date : 2024-10-05DOI: 10.1016/j.susc.2024.122623
{"title":"Characterizing the surface compositions of supported bimetallic PtSn clusters: Effects of cluster-support interactions and surface adsorbates","authors":"","doi":"10.1016/j.susc.2024.122623","DOIUrl":"10.1016/j.susc.2024.122623","url":null,"abstract":"<div><div>PtSn bimetallic clusters on TiO<sub>2</sub>(110) and highly oriented pyrolytic graphite (HOPG) surfaces have been characterized by scanning tunneling microscopy, low energy ion scattering (LEIS), X-ray photoelectron spectroscopy, and temperature programmed desorption (TPD); density functional theory (DFT) calculations have also been performed to better understand adsorption of CO and D<sub>2</sub> on the PtSn surfaces. On TiO<sub>2</sub> at coverages of 2 ML of Pt and 2 ML of Sn, exclusively bimetallic clusters are formed for both orders of deposition because clusters of the first metal completely cover the surface such that all atoms of the second metal are incorporated into the existing clusters. In contrast, on HOPG, the high mobility and weak cluster-support interactions on HOPG result in much larger 2 ML monometallic clusters (∼30 Å high) that do not completely cover the surface, and deposition of the second metal produces larger clusters as well as smaller ones. Despite the difference in cluster morphologies for the different orders of deposition and supports, the LEIS experiments demonstrate that in all cases, the PtSn clusters are rich in Sn at the surface, as expected based on the lower surface free energy for Sn compared to Pt. Furthermore, the +0.2 eV shift in the Sn(3d<sub>5/2</sub>) binding energy observed on all surfaces in the presence of Pt is consistent with PtSn alloy formation. Deposition of 2 ML of Sn on TiO<sub>2</sub> produces two-dimensional clusters with oxidation of Sn and reduction of titania at the cluster-support interface, but addition of Pt to the Sn clusters causes Sn to diffuse away from this interface, leaving Sn in the metallic state. TPD experiments on 2 ML Pt/TiO<sub>2</sub> with increasing coverages of Sn show that the number of adsorption sites for D<sub>2</sub> sharply decreases to nearly zero at 0.5 ML, while CO adsorption decreases to zero only at much higher Sn coverages of 2 ML. DFT studies for Sn modified Pt surfaces and bulk structures demonstrate that for CO adsorption at low Sn coverages (≤0.25 ML), the strong Pt-CO interactions induce diffusion of Pt to the cluster surface and the formation of a bulk Pt<sub>3</sub>Sn alloy, whereas D<sub>2</sub> adsorption does not lead to interactions with the Pt surface that are strong enough to induce alloy formation. A single Sn adatom prevents D<sub>2</sub> adsorption on four neighboring Pt atoms via site-blocking and the donation of electron density to Pt.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-10-05DOI: 10.1016/j.susc.2024.122620
{"title":"Alloying effects on the reactivity of Pd are ensemble dominated","authors":"","doi":"10.1016/j.susc.2024.122620","DOIUrl":"10.1016/j.susc.2024.122620","url":null,"abstract":"<div><div>In this paper the geometric (“ensemble”) and electronic (“ligand”) effects of alloying on surface reactivity and catalysis are considered. The effect of alloying on the behaviour of Pd, both in single crystal form, and as a nanoparticulate catalyst is discussed. The first case concerns Pd alloyed with Cu, and here the reactivity with formic acid and ethanol is modified by the presence of Cu. However, both Cu and Pd maintain their elemental integrity for the reactions, and it is shown that the main alloying effect is one of dilution of Pd atoms, rather than by global electronic factors such as d-band shifting and filling. Similarly, when Pd is alloyed with Au, then the adsorption characteristics (sticking probability and uptake) for CO, O<sub>2</sub>, ethene and acetaldehyde are dominated by changes in the surface arrangement of the two atoms. Au mainly acts as an adsorption blocker, but to different degrees depending upon the nature of the adsorbing molecule and its demand for particular ensemble sizes. Finally, nanoparticulate Pd is considered, and the effect of alloying on high pressure methanol synthesis from CO<sub>2</sub> and H<sub>2</sub> is outlined. Pd on its own is not very selective, instead it mainly produces CO and methane. However, by supporting on oxides such as ZnO, Ga<sub>2</sub>O<sub>3</sub> and In<sub>2</sub>O<sub>3</sub> and by reducing in hydrogen, the Pd forms alloys, which then results in high selectivity to methanol. Again, this is ascribed to the dilution of the Pd ensembles at the surface, which are the cause of methane production.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142532115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-10-01DOI: 10.1016/j.susc.2024.122612
{"title":"Comparing phase sensitive detection and Fourier analysis of modulation excitation spectroscopy data exemplified by Ambient Pressure X-ray Photoelectron Spectroscopy","authors":"","doi":"10.1016/j.susc.2024.122612","DOIUrl":"10.1016/j.susc.2024.122612","url":null,"abstract":"<div><div>Dynamic processes in catalysis are gaining increased attention and could very well be one of the next frontiers in surface science. One way to study such processes is to induce chemical changes on the surface for example by periodically adjusting the (electro)chemical potential in situ and identify the resulting spectral changes. Often this is referred to as Modulation Excitation Spectroscopy (MES). Using Ambient Pressure Photoelectron Spectroscopy data, we here discuss and compare the analysis of MES data using both Phase Sensitive Detection (PSD) and Fourier analysis. We discuss that PSD determines the component magnitude at a user-defined phase value while Fourier analysis provides the maximum oscillation amplitude and respective phase value of oscillating spectral features. We discuss advantages and disadvantages of the different analysis schemes and explore how the full time-evolution can be obtained.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-10-01DOI: 10.1016/j.susc.2024.122622
{"title":"The surface chemistry of cuprous oxide","authors":"","doi":"10.1016/j.susc.2024.122622","DOIUrl":"10.1016/j.susc.2024.122622","url":null,"abstract":"<div><div>The chemical and electronic properties of copper combined with its large natural abundance lend this material to impact a wide range of technological applications, including heterogeneous catalysis. The reactivity of copper in its Cu<sup>1+</sup>oxidation state makes this specific configuration relevant in various chemical reactions, but the facile redox properties of copper make the isolation of individual states for fundamental studies difficult. Here we review three Cu<sub>2</sub>O model systems used to study the interaction of Cu<sup>1+</sup> with small molecules making use of surface science techniques: Cu<sub>2</sub>O/Cu(111), thin polycrystalline Cu<sub>2</sub>O films on Cu foil, and bulk Cu<sub>2</sub>O crystals. Advantages and disadvantages of each system are discussed and exemplified through case studies of chemical adsorption and reactivity studies.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-09-29DOI: 10.1016/j.susc.2024.122619
{"title":"CO oxidation on IrO2(110) surfaces","authors":"","doi":"10.1016/j.susc.2024.122619","DOIUrl":"10.1016/j.susc.2024.122619","url":null,"abstract":"<div><div>We investigated the oxidation of CO on stoichiometric and O-rich IrO<sub>2</sub>(110) surfaces using temperature programmed reaction spectroscopy (TPRS), density functional theory (DFT) calculations and microkinetic simulations. Adsorbed CO on the s-IrO<sub>2</sub>(110) surface generates CO and CO<sub>2</sub> peaks near 545 K during TPRS, and only about 38 % of the CO oxidized to CO<sub>2</sub> when the initial CO layer was saturated. Pre-adsorbed O-atoms, so-called on-top oxygen (O<sub>t</sub>), promote the oxidation of CO adsorbed on IrO<sub>2</sub>(110). On the O<sub>t</sub>-covered surface, CO oxidation by O<sub>t</sub> atoms produces a CO<sub>2</sub> TPRS peak at ∼370 K, and all of the initially adsorbed CO oxidizes to CO<sub>2</sub> when the initial O<sub>t</sub> coverage is greater than the CO coverage. In agreement with the TPRS results, DFT calculations predict that the barrier is about 100 kJ/mol lower for CO oxidation by an O<sub>t</sub> atom than a lattice O-atom of IrO<sub>2</sub>(110). A microkinetic model, parameterized with energy barriers computed using DFT, accurately reproduces the CO and CO<sub>2</sub> TPRS traces only after CO binding energies are lowered to values determined using a hybrid exchange-correlation functional and the barrier for CO molecules to fill bridging O-vacancies is lowered. The simulations predict that O-vacancies play an important role in mediating the CO oxidation kinetics on s-IrO<sub>2</sub>(110), and thereby demonstrate the importance of future spectroscopic studies aimed at characterizing the nature of the surface CO and O species involved in reaction. This study provides new insights for understanding CO oxidation on IrO<sub>2</sub>(110), and provides evidence that several elementary steps can be involved in governing this chemistry.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-09-29DOI: 10.1016/j.susc.2024.122621
{"title":"Stability and dissolution of single-crystalline iron oxide thin films in electrochemical environments","authors":"","doi":"10.1016/j.susc.2024.122621","DOIUrl":"10.1016/j.susc.2024.122621","url":null,"abstract":"<div><div>The stability of single-crystalline monolayer FeO(111) and 10 nm thin Fe<sub>3</sub>O<sub>4</sub>(111) films on Pt(111) upon exposure to environments of increasing chemical complexity has been studied with X-ray photoelectron spectroscopy, temperature-programmed desorption, in-situ scanning tunneling microscopy, and cyclic voltammetry. The well-defined oxide films, which were prepared under ultrahigh-vacuum conditions, were exposed to aqueous solutions of different pH and electrochemical cycling in pure and catechol-containing electrolyte. The films are stable in neutral (pH 7) and alkaline (pH 13) solutions both at open circuit conditions and during electrochemical cycling within the limits of hydrogen and oxygen evolution potentials. Also in strongly acidic (pH 1) perchlorate solution the films remain intact under open circuit conditions, but they quickly dissolve on application of electrochemical potential. Especially for the ultrathin FeO(111) films, catechol enhances the dissolution at neutral pH during electrochemical cycling. A comparison of Pt(111), FeO(111) and Fe<sub>3</sub>O<sub>4</sub>(111) substrates in the electrochemical catechol oxidation reaction reveals enhanced and sustained activity of FeO in alkaline environment, while strong deactivation occurs on Pt(111) and Fe<sub>3</sub>O<sub>4</sub>(111). This is explained by the weaker interaction between catechol and FeO(111) compared to the other substrates, which hampers the formation of a barrier layer on the electrode surface.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-09-26DOI: 10.1016/j.susc.2024.122618
{"title":"Hydroxylation of an ultrathin Co3O4(111) film on Ir(100) studied by in situ ambient pressure XPS and DFT","authors":"","doi":"10.1016/j.susc.2024.122618","DOIUrl":"10.1016/j.susc.2024.122618","url":null,"abstract":"<div><div>In the present work, we have studied the interaction of water with spinel cobalt oxide (Co<sub>3</sub>O<sub>4</sub>), an effect which has been considered a major cause of its catalytic deactivation. Employing a Co<sub>3</sub>O<sub>4</sub>(111) model thin film grown on Ir(100) in (ultra)high vacuum, and ambient pressure X-ray photoelectron spectroscopy (APXPS), hydroxylation in 0.5 mbar H<sub>2</sub>O vapor at room temperature was monitored in real time. The surface hydroxyl (OH) coverage was determined <em>via</em> two different models based (i) on the termination of a pristine and OH-covered Co<sub>3</sub>O<sub>4</sub>(111) surface as derived from density functional theory (DFT) calculations, and (ii) on a homogeneous cobalt oxyhydroxide (CoO(OH)) overlayer. Langmuir pseudo-second-order kinetics were applied to characterize the OH evolution with time, suggesting two regimes of chemisorption at the mosaic-like Co<sub>3</sub>O<sub>4</sub>(111) film: (i) plateaus, which were quickly saturated by OH, followed by (ii) slow hydroxylation in the “cracks” of the thin film. H<sub>2</sub>O dissociation and OH formation, blocking exposed Co<sup>2+</sup> ions and additionally consuming surface lattice oxygen, respectively, may thus account for catalyst deactivation by H<sub>2</sub>O traces in reactive feeds.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-09-21DOI: 10.1016/j.susc.2024.122615
{"title":"Interfacial effect investigation of lithium perchlorate-interacted oxygen-containing carbon paper","authors":"","doi":"10.1016/j.susc.2024.122615","DOIUrl":"10.1016/j.susc.2024.122615","url":null,"abstract":"<div><div>The lithium perchlorate-interacted oxygen-containing carbon paper (LiClO4-OCP) is designed to act as electroactive supercapacitor electrode substrates for the energy storage application. The OCP is fabricated through hydrothermal activation treatment of carbon paper in H<sub>2</sub>O<sub>2</sub> reaction medium. The OCP is composed of graphite pitches with ultra-thin graphene structure of top layer, showing the improved graphitization degree. The LiClO4-OCP with the polarized electrostatic force-induced interfacial adsorption reveals much more intensive interaction than LiClO4-CP with van der Waals force-induced interfacial adsorption, contributing to promoting interfacial charge transfer of LiClO4-OCP. LiClO4-OCP reveals more effective interface charge transfer and more feasible electrolyte diffusion than LiClO4-CP, contributing to higher electrochemical double-layer capacitance. LiClO4-OCP with oxygen-containing groups conducts reversible redox process to supply additional Faradaic capacitance. Mean response current is increased from 0.10 ∼ 1.34 mA cm<sup>-2</sup> for LiClO4-CP to 0.19 ∼ 2.31 mA cm<sup>-2</sup> for LiClO4-OCP at scan rates of 5∼100 mV s<sup>-1</sup>, indicating the improved electrochemical activity of LiClO4-OCP. The cyclic voltammetry-based capacitance increases from 19.91 ∼ 13.01 mF cm<sup>-2</sup> mF g-1 for LiClO4-CP to 37.76 ∼ 23.06 mF cm<sup>-2</sup> for LiClO4-OCP. The galvanostatic charge/discharge-based capacitance decreases from 13.84 ∼ 3.97 mF cm<sup>-2</sup> for LiClO4-CP to 29.71 ∼ 12.92 mF cm<sup>-2</sup> for LiClO4-OCP. Density-functional theory-based simulation calculation proves LiClO4-OCP with such a short molecular distance is allowed to occur strong electrostatic interaction which is caused by the perchlorate ion-induced polarization of oxygen-containing groups. The LiClO4-OCP has lower interfacial energy, lower band gap and higher density of states at Fermi energy level than LiClO4-CP, indicating the improved interfacial interaction and electrical conductivity of LiClO4-OCP. The experimental measurement and theoretical calculation achieve the consistent results of higher electrochemical activity of LiClO4-OCP electrode substrate to present its superior capacitance performance.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142315542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-09-20DOI: 10.1016/j.susc.2024.122617
{"title":"The evolution of model Rh/Fe3O4(001) catalysts in hydrogen environments","authors":"","doi":"10.1016/j.susc.2024.122617","DOIUrl":"10.1016/j.susc.2024.122617","url":null,"abstract":"<div><div>Single metal atoms dispersed on oxides are a new emerging class of catalysts owing to their unique electronic and chemical properties. In this study, we have prepared a series of model single-atom catalysts possessing well-characterized Rh sites that include Rh adatoms (Rh<sub>ad</sub>), mixed surface layers with octahedrally-coordinated Rh (Rh<sub>oct</sub>), as well as metallic Rh clusters and nanoparticles (Rh<sub>met</sub>) on Fe<sub>3</sub>O<sub>4</sub>(001). Using X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM), we investigated the activity of such model systems towards H<sub>2</sub> and their stability in reducing environments. Our results show that the atomically dispersed Rh<sub>ad</sub> and Rh<sub>oct</sub> species do not activate H<sub>2,</sub> which would result in the formation of surface hydroxyls on Fe<sub>3</sub>O<sub>4</sub>(001). In contrast, the presence of Rh<sub>met</sub> in H<sub>2</sub> results in the formation of hydroxyls and subsequent etching of the Fe<sub>3</sub>O<sub>4</sub>(001) at higher temperatures (≥ 500 K) due to water formation via the Mars−van Krevelen mechanism. Additionally, such surface etching leads to the release of the Rh<sub>oct</sub> from the surface lattice and their sintering to Rh<sub>met</sub>. To bridge the material gap between the surface science models and high surface area catalysts, we perform parallel studies on powder Rh/Fe<sub>3</sub>O<sub>4</sub> catalysts. The XPS characterization shows remarkable similarities between these systems. Further, our surface science studies provide an atomistic picture of the behavior of high surface area catalysts in the H<sub>2</sub> atmosphere.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142323806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-09-19DOI: 10.1016/j.susc.2024.122607
{"title":"Evolution of the surface morphology of GaSb epitaxial layers deposited by molecular beam epitaxy (MBE) on GaAs (100) substrates","authors":"","doi":"10.1016/j.susc.2024.122607","DOIUrl":"10.1016/j.susc.2024.122607","url":null,"abstract":"<div><p>This study presents a demonstration of the surface morphology behavior of gallium antimonide (GaSb) layers deposited on gallium arsenide (GaAs) (100) substrates using three different methods: metamorphic, interfacial misfit (IMF) matrix, and a method based on a Polish patent application number P.443805. The first two methods are commonly used, while the third differs in the sequence of successive steps and the presence of Be doping at the initial growth stage. By comparing GaSb layers made by these methods for the same growth parameters, the most favorable procedure for forming a GaSb buffer layer is selected. Using GaAs substrates with a GaSb buffer layer is a cheaper alternative to using GaSb substrates in infrared detector structures based on II-type superlattices T2SL, such as InAs/GaSb. The quality of the GaSb buffer layer determines the quality of the subsequent layers that form the entire T2SL and affects factors such as dark current in terms of application.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001584/pdfft?md5=8c36a3bf254391ffeefbcb9b455b7662&pid=1-s2.0-S0039602824001584-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}