Jamelah S. Al-Otaibi , Y. Sheena Mary , Maria Cristina Gamberini
{"title":"释放拉莫三嗪在纳米管中的潜力:不同溶剂中的DFT, MD模拟,传感特性和药物增强剂","authors":"Jamelah S. Al-Otaibi , Y. Sheena Mary , Maria Cristina Gamberini","doi":"10.1016/j.susc.2025.122789","DOIUrl":null,"url":null,"abstract":"<div><div>Using density functional theory, the adsorption properties of lamotrigine (6-(2,3-dichlorophenyl)1,2,4-triazine-3,5-diamine) (DTD) with CC, AlN and BN nanotubes are reported. Different configurations are selected for optimization. The study addresses the need for efficient drug carriers by evaluating nanotubes (CC, BN, AlN) for lamotrigine (DTD) delivery. Key findings include: PP2 (NH₂-end) has the highest adsorption energy (–190.78 kJ/mol for AlN); SERS effects confirm DTD-nanotube binding, and MD shows stability in water/methanol. In all cases, DTD at the end of the nanotubes give maximum adsorption energy. For all complexes, adsorption energy varies as AlN-DTDPP2 (-190.78) > BNPP2 (-185.09) > CCPP2 (-14.86). The increase in polarizability suggests SERS effect is formed due to adsorption of DTD with nanotubes and the vibrational modes which are absent in the DTD is present in the Raman spectra of complexes. For different attempt frequencies the recovery times are found and very low for all CC-DTD, AlN-DTDPP1 and BN-DTDPP3. For AlN/BN-DTDPP2, the recovery times are very high and the sensing effects are also presented. High docking scores indicate the drug carrier activity of nanotubes. MD simulations are carried out for the complexes giving higher adsorption energy in water and methanol.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"761 ","pages":"Article 122789"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the potential of Lamotrigine in nanotubes: DFT, MD simulations in different solvents, sensing properties and drug enhancer\",\"authors\":\"Jamelah S. Al-Otaibi , Y. Sheena Mary , Maria Cristina Gamberini\",\"doi\":\"10.1016/j.susc.2025.122789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using density functional theory, the adsorption properties of lamotrigine (6-(2,3-dichlorophenyl)1,2,4-triazine-3,5-diamine) (DTD) with CC, AlN and BN nanotubes are reported. Different configurations are selected for optimization. The study addresses the need for efficient drug carriers by evaluating nanotubes (CC, BN, AlN) for lamotrigine (DTD) delivery. Key findings include: PP2 (NH₂-end) has the highest adsorption energy (–190.78 kJ/mol for AlN); SERS effects confirm DTD-nanotube binding, and MD shows stability in water/methanol. In all cases, DTD at the end of the nanotubes give maximum adsorption energy. For all complexes, adsorption energy varies as AlN-DTDPP2 (-190.78) > BNPP2 (-185.09) > CCPP2 (-14.86). The increase in polarizability suggests SERS effect is formed due to adsorption of DTD with nanotubes and the vibrational modes which are absent in the DTD is present in the Raman spectra of complexes. For different attempt frequencies the recovery times are found and very low for all CC-DTD, AlN-DTDPP1 and BN-DTDPP3. For AlN/BN-DTDPP2, the recovery times are very high and the sensing effects are also presented. High docking scores indicate the drug carrier activity of nanotubes. MD simulations are carried out for the complexes giving higher adsorption energy in water and methanol.</div></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":\"761 \",\"pages\":\"Article 122789\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602825000962\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825000962","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Unlocking the potential of Lamotrigine in nanotubes: DFT, MD simulations in different solvents, sensing properties and drug enhancer
Using density functional theory, the adsorption properties of lamotrigine (6-(2,3-dichlorophenyl)1,2,4-triazine-3,5-diamine) (DTD) with CC, AlN and BN nanotubes are reported. Different configurations are selected for optimization. The study addresses the need for efficient drug carriers by evaluating nanotubes (CC, BN, AlN) for lamotrigine (DTD) delivery. Key findings include: PP2 (NH₂-end) has the highest adsorption energy (–190.78 kJ/mol for AlN); SERS effects confirm DTD-nanotube binding, and MD shows stability in water/methanol. In all cases, DTD at the end of the nanotubes give maximum adsorption energy. For all complexes, adsorption energy varies as AlN-DTDPP2 (-190.78) > BNPP2 (-185.09) > CCPP2 (-14.86). The increase in polarizability suggests SERS effect is formed due to adsorption of DTD with nanotubes and the vibrational modes which are absent in the DTD is present in the Raman spectra of complexes. For different attempt frequencies the recovery times are found and very low for all CC-DTD, AlN-DTDPP1 and BN-DTDPP3. For AlN/BN-DTDPP2, the recovery times are very high and the sensing effects are also presented. High docking scores indicate the drug carrier activity of nanotubes. MD simulations are carried out for the complexes giving higher adsorption energy in water and methanol.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.