Surface SciencePub Date : 2024-08-25DOI: 10.1016/j.susc.2024.122590
Yi Tian , Hojoon Lim , Jeongjin Kim , Adrian Hunt , Iradwikanari Waluyo , Sanjaya D. Senanayake , José A. Rodriguez
{"title":"Understanding the morphology and chemical activity of model ZrOx/Au (111) catalysts for CO2 hydrogenation","authors":"Yi Tian , Hojoon Lim , Jeongjin Kim , Adrian Hunt , Iradwikanari Waluyo , Sanjaya D. Senanayake , José A. Rodriguez","doi":"10.1016/j.susc.2024.122590","DOIUrl":"10.1016/j.susc.2024.122590","url":null,"abstract":"<div><p>In this study, the growth of ZrO<sub>x</sub> on Au (111) was investigated using scanning tunneling microscopy (STM) and synchrotron-based ambient pressure X-ray photoelectron spectroscopy (AP-XPS). Nanostructures of ZrO<sub>x</sub> (<em>x</em> = 1,2) at the sub-monolayer (≤ 0.3 ML) level were prepared by vapor depositing Zr metal onto Au (111) followed by oxidation with O<sub>2</sub> or CO<sub>2</sub>. At low coverages of the admetal (< 0.05 ML), the formed ZrO<sub>x</sub> nanostructures were dispersed randomly on the terraces and steps of the Au(111) substrate. Strong oxide-metal interactions prevented the formation of islands of zirconia. The ZrO<sub>x</sub> nanostructures displayed a reactivity towards CO<sub>2</sub> and H<sub>2</sub> not seen for bulk zirconia. C 1 s AP-XPS results indicated that CO<sub>2</sub> molecules adsorbed on Zr/ZrO<sub>x</sub>/Au(111) surfaces could undergo partial decomposition on Zr (CO<sub>2, gas</sub> → CO<sub>gas</sub> + O<sub>ads</sub>), or react with oxygen sites from ZrO<em><sub>x</sub></em> to yield carbonates (Zr-CO<sub>3, ads</sub>). After exposing ZrO<sub>2</sub>/Au (111) surfaces to 1:3 mixtures of CO<sub>2</sub>:H<sub>2</sub>, the formation of HCOO, CO<sub>3</sub>, and CH<sub>3</sub>O was detected in AP-XP spectra. These chemical species decomposed at temperatures in the range of 400‒600 K, making them possible reaction intermediates for methanol synthesis.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122590"},"PeriodicalIF":2.1,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-08-24DOI: 10.1016/j.susc.2024.122589
Lutz Hammer, Alexandra Schewski, Alexander Wegerich, Tilman Kißlinger, M. Alexander Schneider
{"title":"LEED-IV analyses of tellurium adsorbate structures on iridium and gold surfaces","authors":"Lutz Hammer, Alexandra Schewski, Alexander Wegerich, Tilman Kißlinger, M. Alexander Schneider","doi":"10.1016/j.susc.2024.122589","DOIUrl":"10.1016/j.susc.2024.122589","url":null,"abstract":"<div><p>The determination of the configuration of atomic adsorbates on clean metal surfaces has been a key issue in surface science 60 years ago and still is today. We demonstrate that despite the prevalence of combined scanning tunneling microscopy and density functional theory studies of adsorbate systems the pitfalls are plentiful calling for accurate, reliable structure analyses that can be delivered by diffraction methods. We analyze and compare the ordered phases of Te on Ir(111), Ir(100), and Au(100) demonstrating the accuracy, the in-depth information and physical insight that can nowadays be obtained by quantitative low-energy electron diffraction structural analyses.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122589"},"PeriodicalIF":2.1,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001407/pdfft?md5=5d2e604f0131a149fd704b2f9ee5a739&pid=1-s2.0-S0039602824001407-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-08-23DOI: 10.1016/j.susc.2024.122582
Asa Kiuchi , Yaoto Eda , Yousoo Kim , Tomoko K. Shimizu
{"title":"Classification of adsorbates in scanning tunneling microscopy images of Fe3O4(111) surfaces exposed to water and carbon monoxide","authors":"Asa Kiuchi , Yaoto Eda , Yousoo Kim , Tomoko K. Shimizu","doi":"10.1016/j.susc.2024.122582","DOIUrl":"10.1016/j.susc.2024.122582","url":null,"abstract":"<div><p>Understanding the structure of catalyst surfaces with adsorbed molecules is key to improving catalyst design. Scanning tunneling microscopy (STM) allows the observation of adsorption states and sites and provides insights into diffusion and desorption processes; however, the presence of multiple types of molecules on the surface presents challenges such as the identification of species and verification of reaction progress, particularly at room temperature or higher. In this study, we develop a protocol for the height classification analysis of STM images using the Watershed algorithm. This method is applied to a system involving the co-adsorption of H<sub>2</sub>O and CO on the Fe<sub>3</sub>O<sub>4</sub>(111) surface, which represents the beginning of the water-gas shift reaction. Water molecules and dissociated OH species were identified in STM images of the Fe<sub>3</sub>O<sub>4</sub>(111) surface following the adsorption of water. Furthermore, gradual changes in the types of surface species were observed upon exposure of the surface to CO, indicating reaction progression. Our observations suggest that CO may react with molecular water rather than with dissociated OH on Fe sites. Despite its simplicity, the height classification analysis effectively identifies changes in the adsorbates on the catalyst surface. This method can be extended to other catalyst surfaces with adsorbed gasses.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122582"},"PeriodicalIF":2.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S003960282400133X/pdfft?md5=a521c86ee1346871851784985be86359&pid=1-s2.0-S003960282400133X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-08-22DOI: 10.1016/j.susc.2024.122580
Yingying Wang , Jiayi Guo , Chenqi Bai , Lina Xu , Hongping Xiao , Qian Shi , Yihong Ding , Aidong Li , Guoyong Fang
{"title":"H2O-based atomic layer deposition mechanism of aluminum oxide using trimethylaluminum","authors":"Yingying Wang , Jiayi Guo , Chenqi Bai , Lina Xu , Hongping Xiao , Qian Shi , Yihong Ding , Aidong Li , Guoyong Fang","doi":"10.1016/j.susc.2024.122580","DOIUrl":"10.1016/j.susc.2024.122580","url":null,"abstract":"<div><p>As a nanofabrication technology, atomic layer deposition (ALD) has been widely used in the fields of displays, microelectronics, nanotechnology, catalysis, energy and coatings. It demonstrates excellent conformality, large-area uniformity and precise control of the sub-monolayer film. Al<sub>2</sub>O<sub>3</sub> ALD using trimethylaluminum (TMA) and water (H<sub>2</sub>O) as precursors is the most ideal ALD model system. In this work, the reactions of TMA and H<sub>2</sub>O with the surface have been investigated using density functional theory (DFT) calculations in order to obtain more information on the reaction mechanism of the complicated H<sub>2</sub>O-based ALD of Al<sub>2</sub>O<sub>3</sub>. In the TMA reaction, the methyl ligands can be eliminated and new Al-O bonds can be formed via ligand exchange reactions. In the H<sub>2</sub>O reaction, the methyl ligand on the surface can be further eliminated and new Al<img>O bonds can be formed. Meanwhile, the coupling reactions between the surface methyl and hydroxyl groups can further form new Al<img>O bonds and release CH<sub>4</sub> or H<sub>2</sub>O to densify the Al<sub>2</sub>O<sub>3</sub> film. These complicated reaction mechanisms of Al<sub>2</sub>O<sub>3</sub> H<sub>2</sub>O-based ALD can provide theoretical guidance for the precursor design and ALD growth of other oxides and aluminum-based compounds.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122580"},"PeriodicalIF":2.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142057961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-08-22DOI: 10.1016/j.susc.2024.122579
Svetlozar Surnev , Jacek Goniakowski , Malihe Mohammadi , Claudine Noguera , Falko P. Netzer
{"title":"Reduction of a two-dimensional crystalline MoO3 monolayer","authors":"Svetlozar Surnev , Jacek Goniakowski , Malihe Mohammadi , Claudine Noguera , Falko P. Netzer","doi":"10.1016/j.susc.2024.122579","DOIUrl":"10.1016/j.susc.2024.122579","url":null,"abstract":"<div><p>The atomic structure of MoO<sub>x</sub> films formed upon a gradual thermal reduction of an ordered MoO<sub>3</sub> monolayer on the Pd(100) substrate was explored via surface science characterization techniques and density functional theory (DFT) calculations. Two main reduction stages were identified. First, the initial oxygen excess was gradually eliminated by altering the domain boundary length, orientation, and atomic structure. The films nevertheless remained O-rich, with numerous terminal oxygen atoms (formation of Mo<img>O groups), and an elevated work function. Second, multiple ordered O-lean phases were formed, characterized by either very few or no terminal oxygen atoms, and a much smaller surface work function. According to calculations, the positive charging of the Pd substrate stabilizes the oxygen excess during the first stage, but during the second reduction stage, the substrate becomes negatively charged, stabilizing enhanced cation oxidation states. On their basis, the mechanisms underlying the oxygen release from the initial c(2 × 2) domains were disclosed. The experiments showed that the film reduction is perfectly reversible, which highlights the very promising properties of the MoO<sub>3</sub>/Pd system for heterogeneous catalysis.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122579"},"PeriodicalIF":2.1,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001304/pdfft?md5=1525d168946b789b4b9dc648b293aa1e&pid=1-s2.0-S0039602824001304-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-08-20DOI: 10.1016/j.susc.2024.122577
Dongsheng Wang , Yanqing Hou , Endong Ye , Jianxin Wang
{"title":"Adsorption behavior of Cl2 on TiC0.89O0.11(001) surface based on the first principle calculation","authors":"Dongsheng Wang , Yanqing Hou , Endong Ye , Jianxin Wang","doi":"10.1016/j.susc.2024.122577","DOIUrl":"10.1016/j.susc.2024.122577","url":null,"abstract":"<div><p>Based on the first-principles ab initio calculation method of density functional theory (DFT), the adsorption models of Cl<sub>2</sub> molecules on both the TiC<sub>0.89</sub>O<sub>0.11</sub>(001) intact surface and the carbon vacancy surface were established, followed by calculations and analysis of the adsorption structures, adsorption energy, differential charge density, and density of states (DOS). The results demonstrate that the adsorption process of Cl<sub>2</sub> molecules on the TiC<sub>0.89</sub>O<sub>0.11</sub>(001) surface involves chemical adsorption, with a higher likelihood of dissociation into Cl atoms during adsorption. These dissociated Cl atoms can potentially interact with surface Ti and/or C atoms to form Ti-Cl bonds, C-Cl bonds, Ti-Cl-C bonds, and Ti-Cl-Ti bonds. Simultaneously, the stability of the adsorbed structure is influenced by both the bonding conditions between Cl atoms and surface atoms and the position of Cl atom adsorption (e.g., whether it is located above the vacancy C). Following adsorption, there is a weakening in the bonding strength of Ti-C or Ti-O bonds on the TiC<sub>0.89</sub>O<sub>0.11</sub>(001) surface. During the adsorption process, Cl atoms can either act as electron donors or acceptors. When the Ti-Cl bond structure is formed, Cl atoms function as electron acceptors; however, when the C-Cl bond structure is established, Cl atoms predominantly act as electron donors. Surface Ti atoms act as electron donors while surface C and O atoms function as electron acceptors. Additionally, the presence of surface carbon vacancy enhances the interaction between Cl and Ti atoms, weakens the interaction between Cl and C atoms, and attenuates the interaction between C, O, and Ti atoms in the structure. And it can augment the electron acquisition by Cl<sub>2</sub> molecules upon adsorption, reduce the adsorption energy, and promote greater stability in the adsorption structure. All the effects contribute to facilitating TiCl<sub>4</sub> formation.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122577"},"PeriodicalIF":2.1,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001286/pdfft?md5=52d5402f1dbddadac167e3e94a29a84d&pid=1-s2.0-S0039602824001286-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142083098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-08-17DOI: 10.1016/j.susc.2024.122578
Amelia K. Sweet , Sara E. Mason
{"title":"Insights into the interaction of nitrobenzene and the Ag(111) surface: A DFT study","authors":"Amelia K. Sweet , Sara E. Mason","doi":"10.1016/j.susc.2024.122578","DOIUrl":"10.1016/j.susc.2024.122578","url":null,"abstract":"<div><p>This study explores the potential of nitrobenzene as an anolyte material for nonaqueous redox flow batteries (RFBs) by theoretically examining its low-coverage adsorption behavior on neutral and charged Ag(111) model electrode surfaces. At the low coverage limit, DFT calculations show a preference for nitrobenzene to adsorb parallel to the surface, with the benzene ring and nitro group centered over HCP sites. Interactions between nitrobenzene and the surface were analyzed using induced charge density analysis, Bader charge analysis, and projected density of states (PDOS). It was found that nitrobenzene adsorbs primarily through van der Waals interactions with the surface. As nitrobenzene accumulates negative charge, the strength of adsorption diminishes. Understanding the electrode-electrolyte interface is crucial for enhancing RFB electrochemical performance, and this study sheds light on nitrobenzene's interaction with a model Ag electrode.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122578"},"PeriodicalIF":2.1,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-08-17DOI: 10.1016/j.susc.2024.122570
F.B. Mahoungou-Nguimbi , L. Mouketo , B.R. Malonda-Boungou , A.T. Raji , B. M’Passi-Mabiala
{"title":"Ni thin-films on Pd surfaces and effects of oxygen adsorption: Ab-initio study of structures, electronic properties, magnetic anisotropy","authors":"F.B. Mahoungou-Nguimbi , L. Mouketo , B.R. Malonda-Boungou , A.T. Raji , B. M’Passi-Mabiala","doi":"10.1016/j.susc.2024.122570","DOIUrl":"10.1016/j.susc.2024.122570","url":null,"abstract":"<div><p>We report first-principles electronic structure calculations of the structural, electronic, and magnetic properties of model epitaxial layers consisting of nickel (Ni) atomic layers deposited on palladium (Pd) substrate, <em>i.e.</em>, Ni(001)<span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>∣</mo></math></span>Pd<span><math><msub><mrow><mrow><mo>(</mo><mn>001</mn><mo>)</mo></mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> where <span><math><mrow><mi>m</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>6</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>10</mn><mo>,</mo></mrow></math></span> are layer thicknesses. We also investigate the effect of oxygen adsorption on the calculated properties. We found variation in magnetization of between <span><math><mrow><mo>≈</mo><mn>0</mn><mo>.</mo><mn>6</mn><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow></math></span> to 1.00 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> across the nickel layers. Also, finite magnetic moments albeit of small values of between 0.2 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> and 0.3 <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></math></span> is found on the Pd at the interface. This magnetic moment on an otherwise non-magnetic Pd atoms has been adduced to interfacial strain due to lattice mismatch between the Ni and Pd layers at the Ni<span><math><mo>|</mo></math></span>Pd interface. The effect of adsorbed oxygen on the Ni<span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>∣</mo></math></span>Pd<span><math><msub><mrow></mrow><mrow><mi>n</mi></mrow></msub></math></span> is that it increases the magnetic moment on the nickel layers. Also, regarding the magnitude of magnetic anisotropy energy (MAE), we found a high perpendicular values of 1.63 meV and 1.37 meV per unit cell respectively for Ni<span><math><msub><mrow></mrow><mrow><mi>m</mi></mrow></msub></math></span> <span><math><mo>∣</mo></math></span>Pd<sub>10</sub> (<span><math><mrow><mi>m</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>6</mn></mrow></math></span>) which are relatively higher than those reported for other transition metal epitaxial layers. However, the presence of oxygen atom on the Ni<span><math><mo>∣</mo></math></span>Pd changes the direction and magnitude of MAE. Indeed, O adsorption favours or enhances in-plane magnetization direction depending on the thickness of the Ni layers for a fixed Pd thickness. Plots of local density of states (LDOS) which include the effect of spin–orbit coupling (SOC), show that in the case of Ni<span><math><mo>∣</mo></math></span>Pd having perpendicular MAE, there appears a new SOC-induced electronic states below and above the Fermi level. These states appears to stabilize this type of magnetic anisotropy. On the ot","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"750 ","pages":"Article 122570"},"PeriodicalIF":2.1,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-08-14DOI: 10.1016/j.susc.2024.122571
Julián Del Plá, Reinaldo Pis Diez
{"title":"A computational study of the role of cobalt in thiophene adsorption on small Mo and MoCo clusters as site models for the HDS process","authors":"Julián Del Plá, Reinaldo Pis Diez","doi":"10.1016/j.susc.2024.122571","DOIUrl":"10.1016/j.susc.2024.122571","url":null,"abstract":"<div><p>Non periodic density functional theory calculations are used to investigate the role of cobalt atoms in the adsorption of thiophene on small Mo and MoCo clusters. Metallic aggregates play the role of those active sites found in the true catalysts. Two interaction modes between thiophene and metallic sites are considered, namely, the S-mode, in which the organosulfur molecule interacts through the S atom, and the R-mode, in which the interaction takes place through the thiophene ring. A large number of sites, in which thiophene effectively adsorbs, was found, both in the monometallic case and in the bimetallic one. Considerably larger adsorption energies were found when thiophene interacts via the R-mode than when adsorption occurs through the S-mode. The activation of C-S bonds is also more important for R-mode cases than for S-mode ones. Further analysis made on some selected systems and based on density of states and molecular orbital overlap population-projected density of states reveals that thiophene and metallic clusters interact in an energy range around −6.0 eV with respect to the Fermi energy. Bands observed at energies below −6.0 eV correspond to thiophene states that become shifted with respect to the values obtained for isolated thiophene depending on the strength of the interaction. Bands above -6.0 eV describe how C and S atoms interact with Co and Mo ones, providing both bonding and antibonding patterns that helps to understand the overall interaction. Most important is the finding that cobalt atoms seem to play no relevant role during the adsorption of thiophene on metallic sites. Thus, present results obtained using non periodic GGA density functional theory seem to point to cobalt taking part in another step of the overall HDS process, hydrogen adsorption or hydrogen attack to C-S bonds, for instance.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"749 ","pages":"Article 122571"},"PeriodicalIF":2.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-08-14DOI: 10.1016/j.susc.2024.122575
Guocai Lv , Shengzhuo Li , Hao Zhang , Wenjuan Qian , Jie Cheng , Ping Qian
{"title":"CO2 adsorption on a K-promoted MgO surface: A DFT theoretical study","authors":"Guocai Lv , Shengzhuo Li , Hao Zhang , Wenjuan Qian , Jie Cheng , Ping Qian","doi":"10.1016/j.susc.2024.122575","DOIUrl":"10.1016/j.susc.2024.122575","url":null,"abstract":"<div><p>The primary cause of global warming is the emission of greenhouse gases such as CO<sub>2</sub>. So reducing CO<sub>2</sub> emissions is vital. This paper investigates the impact of the atom K as a promoter of MgO on the CO<sub>2</sub> adsorption properties using the DFT theoretical computational method. By analyzing the adsorption energy, bader charge as well as the density of states and COHP, it was found that K-promoting the MgO (100) surface resulted in a redistribution of charge on the MgO surface and enhanced CO<sub>2</sub> adsorption compared to the pure MgO surface. The presence of K atoms causes orbital hybridization among O (CO<sub>2</sub>) and Mg atoms, O (CO<sub>2</sub>) atoms and K atoms, and the surface O atoms and K atoms. These interactions lead to the formation of (MgO)Mg-O(CO<sub>2</sub>) and (CO<sub>2</sub>)O−K−O(MgO) chemical bonds. The adsorption energy of CO<sub>2</sub> on the K-promoted MgO surface increased from -0.32 eV to -1.01 eV compared to the pure surface, enhancing the adsorption of CO<sub>2</sub>.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"749 ","pages":"Article 122575"},"PeriodicalIF":2.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}