Surface SciencePub Date : 2024-11-13DOI: 10.1016/j.susc.2024.122652
Cristina Africh , Maria Peressi , Giovanni Comelli
{"title":"Graphene on Ni surfaces: A personal journey","authors":"Cristina Africh , Maria Peressi , Giovanni Comelli","doi":"10.1016/j.susc.2024.122652","DOIUrl":"10.1016/j.susc.2024.122652","url":null,"abstract":"<div><div>We present a short review of the work we have performed over the last decade in the framework of a scientific program dedicated to characterizing the structure, formation and functionalization of graphene layers grown on Ni surfaces. To this aim, several surface science experimental tools were complemented by numerical simulations mainly based on <em>ab initio</em> methods. In a step-by-step process, both the details and the general trends characterizing the investigated systems became progressively clearer, delineating a unique and consistent story.</div><div>All together the outcome of this intense effort can be regarded as a good example of the level of understanding of a complex problem it is possible to reach through a persistent and systematic approach in which state-of-the-art methods are employed.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"753 ","pages":"Article 122652"},"PeriodicalIF":2.1,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"VS2/graphene heterostructures as cathode materials for sodium-sulfur batteries: A first-principles study","authors":"Jihong Li , Chengdong Wei , Jian Xu , Hongtao Xue , Fuling Tang","doi":"10.1016/j.susc.2024.122650","DOIUrl":"10.1016/j.susc.2024.122650","url":null,"abstract":"<div><div>Sodium-sulfur batteries have garnered significant attention recently due to their high energy density. Nevertheless, the dissolution of sodium polysulfides in the electrolyte results in the shuttle effect, severely impacting the cycling efficiency of these batteries and limiting their widespread application. In this study, a novel two-dimensional VS<sub>2</sub>/ graphene heterostructure was designed. This material is used as an anchoring material for the anode of sodium-sulfur battery to suppress the shuttle effect. This van der Waals heterostructure is composed of graphene and VS<sub>2</sub> stacked, and retains their inherent electronic structures. Graphene not only enhances the conductivity of sulfur cathode, but also improves the polarity of VS<sub>2</sub> thin film. Adsorption simulations of sodium polysulfide showed that the VS<sub>2</sub>/graphene heterostructures possessed suitable adsorption energies in the range of 1.63 ∼ 3.47 eV, which were able to effectively anchor the polysulfide. In addition, the lower Na<sub>2</sub>S decomposition energy barriers and sodium ion migration energy barriers show the potential of the heterostructures in catalyzing the reaction kinetics. Therefore, the VS<sub>2</sub>/graphene heterostructure is anticipated to be an optimal anchoring material for sodium-sulfur batteries.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122650"},"PeriodicalIF":2.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-11-09DOI: 10.1016/j.susc.2024.122649
Qing Liu , Wenchao Jin , Fugong Qi , Shuaiqi Hua , Jinfeng Wang , Jiyu Zhou , Pengjie Wang , Xiangguang Kong , Haimin Ding
{"title":"Effect of alloying elements (Ti, Zn, Zr, Al) on the interfacial properties of Cu/Ni2Si: A DFT study","authors":"Qing Liu , Wenchao Jin , Fugong Qi , Shuaiqi Hua , Jinfeng Wang , Jiyu Zhou , Pengjie Wang , Xiangguang Kong , Haimin Ding","doi":"10.1016/j.susc.2024.122649","DOIUrl":"10.1016/j.susc.2024.122649","url":null,"abstract":"<div><div>The addition of trace alloying elements to metal matrix composites has an important effect on their interfacial bonding properties and strength. In this study, the electronic structure, interfacial stability, and bonding properties of Cu/Ni<sub>2</sub>Si interfaces with doping alloying elements are systematically investigated on the atomic scale. It was found that the addition of alloying elements to the Cu side of the Cu(100)/Ni<sub>2</sub>Si(101)-Ni interface improved the interfacial stability, where Ti, Zn, Zr, and Al increased the interfacial work of adhesion from 2.53 J/m<sup>2</sup> to 3.04 J/m<sup>2</sup>, 2.65 J/m<sup>2</sup>, 3.20 J/m<sup>2</sup>, and 2.82 J/m<sup>2</sup>, respectively. When alloying elements were doped in the sub-interfacial and third interfacial layers, only Zr enhances interfacial stability significantly. Analyses of interfacial and electronic structures show that Ti and Zr stabilize the Cu(100)/Ni<sub>2</sub>Si(101) interface through strong chemical bonds, while Zn and Al reduce interface distortion energy. The thermodynamic stability of the interface increases with higher doping rates. Moreover, increased adhesion tends to enhance the wettability of heterogeneous interfaces. At a 16.6% doping rate of the interfacial layer, Ti and Zr have the most significant effect on the contact angle, reducing it from 98.8° to 89.1° and 86.2°, respectively, thus promoting the wetting process.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122649"},"PeriodicalIF":2.1,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-11-08DOI: 10.1016/j.susc.2024.122651
Bogdana Bahrim, Aaron Martinez, Jonah Watts
{"title":"Adsorbate-induced effects on the H− ion collisions with Na/Ag(111) and K/Ag(111) surfaces","authors":"Bogdana Bahrim, Aaron Martinez, Jonah Watts","doi":"10.1016/j.susc.2024.122651","DOIUrl":"10.1016/j.susc.2024.122651","url":null,"abstract":"<div><div>The <em>H</em><sup>−</sup> ion survival probabilities following on-top collisions with Na adsorbates deposited on Ag(111) at low coverage, are investigated for a wide range of exit angles from 20° to 90° measured from surface, and for various incident ion energies. A wave packet propagation approach is used in these calculations. The survival probabilities exhibit a series of well-defined peaks located at certain exit angles, that are indicative of avoided crossings between the various energy levels involved in the projectile/adsorbate/surface interaction. Both image states and the back-and-forth electronic motion between the ion projectile and the adsorbate/surface system contribute to the electronic population recaptured during the exit trajectory. For ion-surface collisions away from the on-top configuration, but in the close vicinity of adsorbates, a model is proposed to describe the variation of the <em>H</em><sup>−</sup> projectile's distance of closest approach to the adsorbate-covered Ag(111) surface in terms of the ion's impact point on surface, e.g., starting from the on-top collision with a single adsorbate and gradually moving away, towards the “clean” surface. The distance of closest approach is a key factor in calculating correctly the ion survival probabilities in the close region around the adsorbate, where the scattered ion fractions are affected the most. Results are shown for <em>H</em><sup>−</sup> in interaction with K/Ag(111).</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122651"},"PeriodicalIF":2.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-11-08DOI: 10.1016/j.susc.2024.122636
Miquel B. Salmeron, Xiao Zhao
{"title":"One century of evolution of surface science, a personal perspective","authors":"Miquel B. Salmeron, Xiao Zhao","doi":"10.1016/j.susc.2024.122636","DOIUrl":"10.1016/j.susc.2024.122636","url":null,"abstract":"<div><div>Compared to the bulk, surfaces of materials usually exhibit unique chemical, structural and electronic properties due to their distinct interactions with the external phase, such as vacuum, gas, liquid or another solid. Breakthroughs in this field are typically driven by significant instrumental development. In this review we will highlight a few developments in surface science in the last 40 years, as well as the discoveries they brought to the scientific and engineering communities. These findings, together with relevant technical developments, enable a deeper understanding of phenomena critical to catalysis, energy conversion, and nanotechnology.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122636"},"PeriodicalIF":2.1,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-11-06DOI: 10.1016/j.susc.2024.122648
Khalid Mujasam Batoo , Iman Samir Alalaq , Rekha MM , Anurag Mishra , Shilpa Sharma , G.V. Siva Prasad , Muhammad Farzik Ijaz , Salima B. Alsaadi , Ahmed Ali Mtasher , Fadeel F. Seed
{"title":"A novel MoS2/Pd5 nanocluster heterojunction system with improved surface reactivity for efficient gas sensing: A DFT study","authors":"Khalid Mujasam Batoo , Iman Samir Alalaq , Rekha MM , Anurag Mishra , Shilpa Sharma , G.V. Siva Prasad , Muhammad Farzik Ijaz , Salima B. Alsaadi , Ahmed Ali Mtasher , Fadeel F. Seed","doi":"10.1016/j.susc.2024.122648","DOIUrl":"10.1016/j.susc.2024.122648","url":null,"abstract":"<div><div>Our work has reflected considerable interest in unique Pd nanocluster/MoS<sub>2</sub> heterojunction systems due to their potential applications in materials science, chemistry and physics. We focused on exploiting Pd<sub>5</sub>/MoS<sub>2</sub> nanocluster system, a novel heterojunction material for gas sensing applications. In addition, we exploited the electronic properties of Pd dopant on the MoS<sub>2</sub> surface to make a comparative study. Our DFT calculations indicate that the Pd<sub>5</sub>/MoS<sub>2</sub> heterojunction structure exhibits a higher affinity for adsorbing gas molecules such as CO, NH<sub>3</sub>, NO, and NO<sub>2</sub>, while the perfect MoS<sub>2</sub> shows weak gas adsorption capacity. Pd<sub>5</sub>/MoS<sub>2</sub> heterojunction exhibits semiconducting feature with a weakened and narrower band gap, making it more suitable for gas sensing due to its higher conductivity. We analyzed important factors like adsorption distance/energies, density of states, band structure and difference of electron density concerning adsorbed gases on the heterojunction surface. Based on the electron density difference maps, we can see the giant growth of charges over the adsorbed molecules, as well as between the adsorbing atoms. Based on our findings, the conductivity of the nanomaterial undergoes a remarkable change, which helps reinforce the applicability of the Pd<sub>5</sub>/MoS<sub>2</sub> heterojunction nanosystem in sensing and adsorbing gas molecules.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122648"},"PeriodicalIF":2.1,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-11-03DOI: 10.1016/j.susc.2024.122647
Eun Mi Kim, Junseok Kim, Kristen A. Fichthorn
{"title":"A study of Cl adsorption on Pt(111) and Pt(100) using Ab Initio Grand-canonical Monte Carlo","authors":"Eun Mi Kim, Junseok Kim, Kristen A. Fichthorn","doi":"10.1016/j.susc.2024.122647","DOIUrl":"10.1016/j.susc.2024.122647","url":null,"abstract":"<div><div>We used <em>ab initio</em> grand-canonical Monte Carlo (AIGCMC) simulations based on plane-wave density-functional theory to probe the structures and surface energies of Pt(100) and Pt(111) with adsorbed chlorine. For Pt(100), we considered both the (1 × 1) surface and a (5 × 1) reconstruction, as a model for the experimentally observed “hex” reconstruction of Pt(100). We constructed phase diagrams of the surface energies as function of the Cl chemical potential and identified the most relevant surfaces. For Pt(100), we find the hex reconstruction is favored at low Cl chemical potentials and that Cl adsorption lifts the reconstruction. The progression of ordered structures predicted for this surface is: bare (5 × 1) Pt(100), Θ = 1/2 (1 × 1) Pt(100), and Θ = 2/3 (1 × 1) Pt(100), where Θ is the fractional surface coverage of Cl. All these structures are seen experimentally. We also observe a structure with Θ = 3/4 and intermixing between Pt and Cl on Pt(100) that is related to the structure at Θ = 2/3. For Pt(111), we find a progression of (3 × 3) unit cells at Θ = 1/9, 1/3, 4/9, 5/9, and 2/3. The structures at Θ = 1/3 and 4/9 have been proposed experimentally and most experiments predict a series of (3 × 3) unit cells with increasing Cl coverage. If intermixing between Cl and Pt does not occur in experiment, then we find a (4 × 2) Cl structure at Θ = 1/2 is energetically favored, as is observed in experiment. A strength of AIGCMC is the capability to identify relevant structures, including disordered structures, without predefined input. This increases the chance of having high fidelity to experiment and identifying relevant substrates for applications.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122647"},"PeriodicalIF":2.1,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-11-01DOI: 10.1016/j.susc.2024.122646
Rui Yang, Xiao-Huan Lv, Ke-Xin Hou, Xing-Qiang Shi, Jiang-Long Wang
{"title":"Abnormal adsorption of lithium on the graphene surface of graphene/dT(H)-MoS2 heterostructures","authors":"Rui Yang, Xiao-Huan Lv, Ke-Xin Hou, Xing-Qiang Shi, Jiang-Long Wang","doi":"10.1016/j.susc.2024.122646","DOIUrl":"10.1016/j.susc.2024.122646","url":null,"abstract":"<div><div>The graphene/MoS<sub>2</sub> heterostructures (Gr/MoS<sub>2</sub>) exhibit excellent performance for ion batteries, such as superior stability and cyclicity for ion battery storage, and have great potentials for other applications. Lithium (Li) adsorption on/in Gr/MoS<sub>2</sub> heterostructures exhibits advanced properties and interesting phenomena, as well as the phase engineering of MoS<sub>2</sub>. However, unified understanding for the different adsorption behaviors remains lacking, although fully understanding to the adsorption behaviors is of vital importance for their applications. In the current work, the Li adsorptions on the Gr surface of Gr/dT(H)-MoS<sub>2</sub> heterostructures are systematically analyzed based on density functional theory calculations, and highlight the differences between Gr/H-MoS<sub>2</sub> and Gr/dT-MoS<sub>2</sub> for Li adsorption. To fully understand the adsorption behaviors, we perform detailed analyses from four interrelated aspects: 1) Electrostatic interactions from detailed Bader charge analysis, 2) charge density difference Δρ(<em>z</em>), 3) energy-level alignment between Li and the band edges of Gr, dT-, and H-MoS<sub>2</sub>, and 4) the resulted interface dipoles. We find that partial electrons in Li can pass through Gr to H-MoS<sub>2</sub> and the origin is attributed to the weak electronic-shielding of Gr (even weaker than H-MoS<sub>2</sub>). All of the above extended analysis not only enables us to understand the abnormal adsorption of Li on the Gr surface of Gr/dT(H)-MoS<sub>2</sub> heterostructures, but also helps guide the selection of ion battery materials. Moreover, we extend the discussion of Li adsorption to other alkali metal atoms with smaller work functions (such as: Na and K). Our work not only provides understanding to the abnormal adsorption of Li on the Gr surface of Gr/dT(H)-MoS<sub>2</sub> heterostructures, but also helps guide the selection of ion battery materials. So, the insights from this study are important for their related applications. This paper reveals and explains an interesting abnormal adsorption phenomenon of lithium on van der Waals heterostructures of graphene and different phases of MoS<sub>2</sub>.The conclusion and insights from this work is not limited to Li (applicable at least to Na and K, also), and hence our work is helpful for establishing the surface-adsorption mechanisms of ion batteries.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122646"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142592995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-11-01DOI: 10.1016/j.susc.2024.122631
Martin Aeschlimann , Jan Philipp Bange , Michael Bauer , Uwe Bovensiepen , Hans-Joachim Elmers , Thomas Fauster , Lukas Gierster , Ulrich Höfer , Rupert Huber , Andi Li , Xintong Li , Stefan Mathias , Karina Morgenstern , Hrvoje Petek , Marcel Reutzel , Kai Rossnagel , Gerd Schönhense , Markus Scholz , Benjamin Stadtmüller , Julia Stähler , Martin Weinelt
{"title":"Time-resolved photoelectron spectroscopy at surfaces","authors":"Martin Aeschlimann , Jan Philipp Bange , Michael Bauer , Uwe Bovensiepen , Hans-Joachim Elmers , Thomas Fauster , Lukas Gierster , Ulrich Höfer , Rupert Huber , Andi Li , Xintong Li , Stefan Mathias , Karina Morgenstern , Hrvoje Petek , Marcel Reutzel , Kai Rossnagel , Gerd Schönhense , Markus Scholz , Benjamin Stadtmüller , Julia Stähler , Martin Weinelt","doi":"10.1016/j.susc.2024.122631","DOIUrl":"10.1016/j.susc.2024.122631","url":null,"abstract":"<div><div>Light is a preeminent spectroscopic tool for investigating the electronic structure of surfaces. Time-resolved photoelectron spectroscopy has mainly been developed in the last 30 years. It is therefore not surprising that the topic was hardly mentioned in the issue on “The first thirty years” of surface science. In the second thirty years, however, we have seen tremendous progress in the development of time-resolved photoelectron spectroscopy on surfaces. Femtosecond light pulses and advanced photoelectron detection schemes are increasingly being used to study the electronic structure and dynamics of occupied and unoccupied electronic states and dynamic processes such as the energy and momentum relaxation of electrons, charge transfer at interfaces and collective processes such as plasmonic excitation and optical field screening. Using spin- and time-resolved photoelectron spectroscopy, we were able to study ultrafast spin dynamics, electron–magnon scattering and spin structures in magnetic and topological materials. Light also provides photon energy as well as electric and magnetic fields that can influence molecular surface processes to steer surface photochemistry and hot-electron-driven catalysis. In addition, we can consider light as a chemical reagent that can alter the properties of matter by creating non-equilibrium states and ultrafast phase transitions in correlated materials through the coupling of electrons, phonons and spins. Electric fields have also been used to temporarily change the electronic structure. This opened up new methods and areas such as high harmonic generation, light wave electronics and attosecond physics. This overview certainly cannot cover all these interesting topics. But also as a testimony to the cohesion and constructive exchange in our ultrafast community, a number of colleagues have come together to share their expertise and views on the very vital field of dynamics at surfaces. Following the introduction, the interested reader will find a list of contributions and a brief summary in Section <span><span>1.3</span></span>.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"753 ","pages":"Article 122631"},"PeriodicalIF":2.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface SciencePub Date : 2024-10-29DOI: 10.1016/j.susc.2024.122637
Anders Nilsson
{"title":"X-ray and photoelectron spectroscopy of surface chemistry; from bonding via femtosecond to operando","authors":"Anders Nilsson","doi":"10.1016/j.susc.2024.122637","DOIUrl":"10.1016/j.susc.2024.122637","url":null,"abstract":"<div><div>For the 60th anniversary of Surface Science, I present here a personal account of some of the most significant contributions I have made to the field over the past three decades. The utilisation of X-rays serves as the foundation for these studies, encompassing X-ray spectroscopy for the mapping of surface chemical bonds, probing of surface reactions on ultrafast timescales, and X-ray photoelectron spectroscopy under operando conditions. The direct projection of electronic states onto the adsorbed atom allowed the detection of bonding and anti-bonding states within the d-band model. The selective probing of orbitals of different symmetries on the two atoms in adsorbed N<sub>2</sub> provided a fundamental understanding of the nature of diatomic bonding to surfaces. Ultrafast optical pumping and X-ray laser techniques allowed the study of CO undergoing desorption leading to the observation of the precursor state. Pump-probed studies of co-adsorbed CO and O on Ru enabled the means to detect transition state species during catalytic CO oxidation. The use of operando X-ray photoelectron spectroscopy at near-atmospheric pressures opened the door to probe the surface chemistry and gain insight into the reaction mechanism during hydrogenation reactions to produce ammonia, hydrocarbons, methanol and ethanol. By inserting an electrochemical cell into the spectroscopic chamber, both fuel cell and water splitting electrocatalysis could be studied giving insight about the reaction mechanism.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122637"},"PeriodicalIF":2.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}