Electrical activity of aluminum, boron, and n-type impurities defect-complexes in germanium: Implications for enhanced Ge-based devices

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL
Emmanuel Igumbor , Edwin Mapasha , Abdulrafiu Tunde Raji , Ezekiel Omotoso
{"title":"Electrical activity of aluminum, boron, and n-type impurities defect-complexes in germanium: Implications for enhanced Ge-based devices","authors":"Emmanuel Igumbor ,&nbsp;Edwin Mapasha ,&nbsp;Abdulrafiu Tunde Raji ,&nbsp;Ezekiel Omotoso","doi":"10.1016/j.susc.2025.122742","DOIUrl":null,"url":null,"abstract":"<div><div>Studies on point defects in germanium (Ge) are increasing, primarily because these defects have the potential to modify the electronic and optical properties of Ge, thereby enhancing device applications. While significant progress has been made in defect studies, a comprehensive understanding of defect complexes resulting from interactions between <span><math><mi>p</mi></math></span>-type (Al or B) and <span><math><mi>n</mi></math></span>-type atoms (D<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span> and D<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>X<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>; where D = Al, B, and X = N, P, As, Sb) is still lacking. Therefore density functional theory calculations of electrically active defect levels in Ge that are caused by interactions between <span><math><mi>n</mi></math></span>-type impurity atoms and Al or B, are presented. For defect-complexes formed by Al and <span><math><mi>n</mi></math></span>-type atoms, Al and P exhibit the highest formation stability under equilibrium conditions. Conversely, B<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>P<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span> represents the most energetically favorable defect-complex. With the exception of B<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>, the energetic stability of all defect-complexes suggests that Al and B interstitials form strong bonds with <span><math><mi>n</mi></math></span>-type substitutional atoms. Electrical behavior analyses of these defects reveal that defect-complexes formed by Al and <span><math><mi>n</mi></math></span>-type atoms induce deep defect levels. Specifically, Al<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>N<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span> acts as an acceptor, while Al<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span> behaves as a donor. The defects B<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>Sb<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>, B<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>P<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>, and B<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span>As<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span> donate electrons to the conduction band at energy levels within the range of 3 <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>B</mi></mrow></msub><mi>T</mi></mrow></math></span>. Furthermore, B<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>Sb<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span> induces shallow donor levels, whereas B<span><math><msub><mrow></mrow><mrow><mi>Ge</mi></mrow></msub></math></span>P<span><math><msub><mrow></mrow><mrow><mi>i</mi></mrow></msub></math></span> induces acceptor levels. This study opens new research opportunities in the experimental synthesis of defects and offers insights into controlling them, potentially enhancing electronic devices.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"758 ","pages":"Article 122742"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825000494","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Studies on point defects in germanium (Ge) are increasing, primarily because these defects have the potential to modify the electronic and optical properties of Ge, thereby enhancing device applications. While significant progress has been made in defect studies, a comprehensive understanding of defect complexes resulting from interactions between p-type (Al or B) and n-type atoms (DGeXi and DiXGe; where D = Al, B, and X = N, P, As, Sb) is still lacking. Therefore density functional theory calculations of electrically active defect levels in Ge that are caused by interactions between n-type impurity atoms and Al or B, are presented. For defect-complexes formed by Al and n-type atoms, Al and P exhibit the highest formation stability under equilibrium conditions. Conversely, BGePi represents the most energetically favorable defect-complex. With the exception of BGeNi, the energetic stability of all defect-complexes suggests that Al and B interstitials form strong bonds with n-type substitutional atoms. Electrical behavior analyses of these defects reveal that defect-complexes formed by Al and n-type atoms induce deep defect levels. Specifically, AlGeNi acts as an acceptor, while AliAsGe behaves as a donor. The defects BGeSbi, BiPGe, and BiAsGe donate electrons to the conduction band at energy levels within the range of 3 kBT. Furthermore, BGeSbi induces shallow donor levels, whereas BGePi induces acceptor levels. This study opens new research opportunities in the experimental synthesis of defects and offers insights into controlling them, potentially enhancing electronic devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface Science
Surface Science 化学-物理:凝聚态物理
CiteScore
3.30
自引率
5.30%
发文量
137
审稿时长
25 days
期刊介绍: Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to: • model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions • nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena • reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization • phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization • surface reactivity for environmental protection and pollution remediation • interactions at surfaces of soft matter, including polymers and biomaterials. Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信