Effect of tensile strain on photoelectric properties of C-doped SnSe2 system

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL
Miaomiao Lou , Guili Liu , Meng Xu , Yuan Liu , Guoying Zhang
{"title":"Effect of tensile strain on photoelectric properties of C-doped SnSe2 system","authors":"Miaomiao Lou ,&nbsp;Guili Liu ,&nbsp;Meng Xu ,&nbsp;Yuan Liu ,&nbsp;Guoying Zhang","doi":"10.1016/j.susc.2025.122697","DOIUrl":null,"url":null,"abstract":"<div><div>The geometric structure, stability, electronic structure and optical properties of the pristine SnSe<sub>2</sub> and C-doped SnSe<sub>2</sub> systems under tensile strain were computed using first principles. The findings indicate that the Sn-Se bond of the C-doped SnSe<sub>2</sub> system is longer than that of the pristine SnSe<sub>2</sub> system under the same tensile strain, and all systems in the low strain range can be stably formed. The electronic structure indicates that pristine SnSe<sub>2</sub> is an indirect bandgap semiconductor. Under the action of tensile strain, the introduction of C atoms leads to a transformation of the band gap type. The valence band of the C-doped SnSe<sub>2</sub> system is mainly attributed to the Se-4p and Sn-5p orbitals, while the conduction band is primarily assigned by Se-4p, Sn-5s and C-2p orbitals.The optical properties show that the peaks of ε<sub>1</sub>(ω) and ε<sub>2</sub>(ω) of both the pristine and doped systems are red-shifted under tensile strain, and the dielectric function ε<sub>2</sub>(ω), absorption and reflection peaks of the doped system are lower than those of the pristine system, indicating that the introduction of C atoms can effectively improve the conductivity of the materials. Meanwhile, the absorption peak of the doped system was blue-shifted to the high-energy region relative to that of the pristine system. Under the action of tensile strain, the reflection peak of the pristine SnSe<sub>2</sub> system is redshifted, indicating that the tensile strain improves the utilization rate of the SnSe<sub>2</sub> system for ultraviolet light and can be used as an excellent alternative material for ultraviolet light detectors.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"754 ","pages":"Article 122697"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825000044","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The geometric structure, stability, electronic structure and optical properties of the pristine SnSe2 and C-doped SnSe2 systems under tensile strain were computed using first principles. The findings indicate that the Sn-Se bond of the C-doped SnSe2 system is longer than that of the pristine SnSe2 system under the same tensile strain, and all systems in the low strain range can be stably formed. The electronic structure indicates that pristine SnSe2 is an indirect bandgap semiconductor. Under the action of tensile strain, the introduction of C atoms leads to a transformation of the band gap type. The valence band of the C-doped SnSe2 system is mainly attributed to the Se-4p and Sn-5p orbitals, while the conduction band is primarily assigned by Se-4p, Sn-5s and C-2p orbitals.The optical properties show that the peaks of ε1(ω) and ε2(ω) of both the pristine and doped systems are red-shifted under tensile strain, and the dielectric function ε2(ω), absorption and reflection peaks of the doped system are lower than those of the pristine system, indicating that the introduction of C atoms can effectively improve the conductivity of the materials. Meanwhile, the absorption peak of the doped system was blue-shifted to the high-energy region relative to that of the pristine system. Under the action of tensile strain, the reflection peak of the pristine SnSe2 system is redshifted, indicating that the tensile strain improves the utilization rate of the SnSe2 system for ultraviolet light and can be used as an excellent alternative material for ultraviolet light detectors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface Science
Surface Science 化学-物理:凝聚态物理
CiteScore
3.30
自引率
5.30%
发文量
137
审稿时长
25 days
期刊介绍: Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to: • model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions • nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena • reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization • phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization • surface reactivity for environmental protection and pollution remediation • interactions at surfaces of soft matter, including polymers and biomaterials. Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信