Emanuel Colombi Manzi , Michail Stamatakis , Giovanni Di Liberto , Gianfranco Pacchioni
{"title":"Hydrogen complexes on single-atom alloys: A combined DFT – Kinetic Monte Carlo study","authors":"Emanuel Colombi Manzi , Michail Stamatakis , Giovanni Di Liberto , Gianfranco Pacchioni","doi":"10.1016/j.susc.2024.122688","DOIUrl":null,"url":null,"abstract":"<div><div>Single-Atom Catalysts (SACs) are a new class of solid catalysts with potential applications in a wide spectrum of chemical reactions. The family of Single Atom Alloys (SAAs) is promising for hydrogen-related reactions. One interesting aspect of SACs is that their chemistry is reminiscent of coordination chemistry, and a pertinent example is the formation of dihydrogen complexes in hydrogen-related reactions with similarities to coordination compounds. The formation of these hydrogen complexes has been suggested also for SAAs, based on density functional theory (DFT) calculations. In this work, we conducted a study combining DFT with Kinetic Monte Carlo (KMC) to investigate the formation of hydrogen complexes on a set of SAAs. We scrutinized 14 SAAs with DFT and performed KMC simulations on three relevant cases. Our study considers explicitly the kinetic barriers for the formation and decomposition of these complexes to elucidate the kinetics of the adsorption of molecular H<sub>2</sub> on SAAs. The results indicate that the new species can be relevant depending both on their stability and the reaction barriers involved. In particular, we focused on three test cases, Co@Rh(111), Pd@Rh(111) and Co@Au(111) showing that the formation of dihydrogen species, H<sub>2</sub>*, where * indicates an adsorbed complex, can affect the formation of the complex from molecular H<sub>2</sub>.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"754 ","pages":"Article 122688"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824002395","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Single-Atom Catalysts (SACs) are a new class of solid catalysts with potential applications in a wide spectrum of chemical reactions. The family of Single Atom Alloys (SAAs) is promising for hydrogen-related reactions. One interesting aspect of SACs is that their chemistry is reminiscent of coordination chemistry, and a pertinent example is the formation of dihydrogen complexes in hydrogen-related reactions with similarities to coordination compounds. The formation of these hydrogen complexes has been suggested also for SAAs, based on density functional theory (DFT) calculations. In this work, we conducted a study combining DFT with Kinetic Monte Carlo (KMC) to investigate the formation of hydrogen complexes on a set of SAAs. We scrutinized 14 SAAs with DFT and performed KMC simulations on three relevant cases. Our study considers explicitly the kinetic barriers for the formation and decomposition of these complexes to elucidate the kinetics of the adsorption of molecular H2 on SAAs. The results indicate that the new species can be relevant depending both on their stability and the reaction barriers involved. In particular, we focused on three test cases, Co@Rh(111), Pd@Rh(111) and Co@Au(111) showing that the formation of dihydrogen species, H2*, where * indicates an adsorbed complex, can affect the formation of the complex from molecular H2.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.