Jolanta Maksymiuk , Izabela A. Wrona , Radoslaw Szczesniak , Artur P. Durajski
{"title":"Tunable optical and electronic properties of monolayer MoS2 via substitutional doping","authors":"Jolanta Maksymiuk , Izabela A. Wrona , Radoslaw Szczesniak , Artur P. Durajski","doi":"10.1016/j.susc.2025.122788","DOIUrl":null,"url":null,"abstract":"<div><div>We present a comprehensive first-principles investigation of the electronic and optical properties of monolayer MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> doped with p-block elements (B, C, N, O, Al, Si, P, Ga, Ge, As, and Se) at the sulfur site. Our calculations demonstrate that substitutional doping profoundly alters the band structure, introducing localized or hybridized impurity states that can reduce, close, or maintain the band gap, depending on the dopant. Notably, B, N, Al, and Ga induce metallic-like behavior, whereas O, C, Se, and Si preserve semiconducting characteristics. Partial density of states analysis reveals that states near the Fermi level are dominated by Mo and S orbitals, with dopants playing a critical secondary role in modulating the host electronic structure. Optical property calculations show dopant-dependent tunability of absorption and transparency across UV, visible, and infrared regions. For example, Al doping enhances UV absorption, while P doping modifies the infrared response. Remarkably, all doped systems retain high visible transparency (<span><math><mo>></mo></math></span>75%) despite structural and electronic perturbations, underscoring their potential for optoelectronic and transparent electronics applications. This work establishes substitutional doping as a powerful strategy for tailoring the electronic and optical properties of monolayer MoS<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> for next-generation device engineering.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"761 ","pages":"Article 122788"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825000950","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present a comprehensive first-principles investigation of the electronic and optical properties of monolayer MoS doped with p-block elements (B, C, N, O, Al, Si, P, Ga, Ge, As, and Se) at the sulfur site. Our calculations demonstrate that substitutional doping profoundly alters the band structure, introducing localized or hybridized impurity states that can reduce, close, or maintain the band gap, depending on the dopant. Notably, B, N, Al, and Ga induce metallic-like behavior, whereas O, C, Se, and Si preserve semiconducting characteristics. Partial density of states analysis reveals that states near the Fermi level are dominated by Mo and S orbitals, with dopants playing a critical secondary role in modulating the host electronic structure. Optical property calculations show dopant-dependent tunability of absorption and transparency across UV, visible, and infrared regions. For example, Al doping enhances UV absorption, while P doping modifies the infrared response. Remarkably, all doped systems retain high visible transparency (75%) despite structural and electronic perturbations, underscoring their potential for optoelectronic and transparent electronics applications. This work establishes substitutional doping as a powerful strategy for tailoring the electronic and optical properties of monolayer MoS for next-generation device engineering.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.