Zicheng Jiang, Ting Zheng, Wenwen Zhang, Linqiang Tao
{"title":"Development process and evolution mechanism of microstructures of friction-induced plastic deformation layers on UHMWPE","authors":"Zicheng Jiang, Ting Zheng, Wenwen Zhang, Linqiang Tao","doi":"10.1016/j.susc.2025.122804","DOIUrl":null,"url":null,"abstract":"<div><div>UHMWPE is a vital material used in artificial joint replacements because of its excellent mechanical properties and wear resistance. This study systematically investigated the development process and the evolution mechanism of plastic deformation of UHMWPE. The plastic deformation layer that protrudes at the edge of the groove grows gradually and stabilizes over time, while a higher rotation speed leads to a faster development of the protruded plastic layers. Raman spectroscopy results in the worn surface show increased crystallinity in the plastic deformation layers, especially at the groove edges, implying ordered distributions of microstructures. The scratch and indentation results indicate a densely packed but anisotropic distribution of microstructures in UHMWPE. Additionally, MD simulation results indicate that the frictional process creates ordered distributions of polyethylene chains, thereby enhancing the interaction strength between adjacent molecular chains. The compactly arranged polyethylene chains flow along the frictional direction as the Fe slab moves linearly, and show the potential to separate from the undeformed substrate in UHMWPE, forming the plastic deformation layer. More PE chains aligned parallel to friction at the initial stage could result in greater plastic deformations. These results offer new insights into the wear mechanisms of UHMWPE, showing that the wear of UHMWPE is closely linked to the development of the plastic deformation layer.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"761 ","pages":"Article 122804"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602825001116","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
UHMWPE is a vital material used in artificial joint replacements because of its excellent mechanical properties and wear resistance. This study systematically investigated the development process and the evolution mechanism of plastic deformation of UHMWPE. The plastic deformation layer that protrudes at the edge of the groove grows gradually and stabilizes over time, while a higher rotation speed leads to a faster development of the protruded plastic layers. Raman spectroscopy results in the worn surface show increased crystallinity in the plastic deformation layers, especially at the groove edges, implying ordered distributions of microstructures. The scratch and indentation results indicate a densely packed but anisotropic distribution of microstructures in UHMWPE. Additionally, MD simulation results indicate that the frictional process creates ordered distributions of polyethylene chains, thereby enhancing the interaction strength between adjacent molecular chains. The compactly arranged polyethylene chains flow along the frictional direction as the Fe slab moves linearly, and show the potential to separate from the undeformed substrate in UHMWPE, forming the plastic deformation layer. More PE chains aligned parallel to friction at the initial stage could result in greater plastic deformations. These results offer new insights into the wear mechanisms of UHMWPE, showing that the wear of UHMWPE is closely linked to the development of the plastic deformation layer.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.