{"title":"Selective removal of dolomite from rare earth element-bearing phosphorite by flotation and leaching and the adsorption mechanism of agents on mineral surfaces","authors":"Jun Xie","doi":"10.1002/sia.7271","DOIUrl":"https://doi.org/10.1002/sia.7271","url":null,"abstract":"The rare earth elements (REEs)-bearing phosphorite was a potential REE resource, which contained all REEs except polonium, among them lanthanide, cerium, neodymium, and yttrium were especially enriched. REEs mainly occurred in fluorapatite (Fap) and had a high positive correlation with phosphorus content. By adopting a new green environmental fatty acid collector GJBW and through one roughing and one refining reverse flotation process, all REEs were pre-enriched. The flotation concentrate was further leached with citric acid (CA), and all REEs were further enriched. The results of X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) showed that dolomite (Dolo) was removed and Fap was enriched in phosphorite, the selective enrichment of phosphorus and REEs was realized. Density functional theory (DFT) calculation revealed the mechanism of deep purification of REEs and phosphorus in phosphorite by CA at the micro-scale. The results showed that the number and strength of bonding between CA and Dolo (104) surface were greater than that between CA and Fap (001) surface, and CA was more easily adsorbed on Dolo (104) surface. Under the same conditions, Dolo in phosphorite was more easily leached by CA, while Fap was further enriched. This process provided a theoretical basis for the comprehensive recovery of REEs and phosphorus from phosphorite.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138534740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Behnam Moeini, John M. Linford, Neal Gallagher, Matthew R. Linford
{"title":"Surface analysis insight note: An example of a cluster analysis of spectra from an X-ray photoelectron spectroscopy image","authors":"Behnam Moeini, John M. Linford, Neal Gallagher, Matthew R. Linford","doi":"10.1002/sia.7270","DOIUrl":"https://doi.org/10.1002/sia.7270","url":null,"abstract":"Identification of similar and dissimilar spectra is an important part of analyzing X-ray photoelectron spectroscopy (XPS) images. Cluster analysis (CA) is a commonly used exploratory data analysis (EDA) method that groups similar spectra in a data set. CA can be performed in either an agglomerative fashion, for example, using Ward's method, which involves successively linking together/clustering the most similar spectra in a data set, or in a divisive fashion, for example, using the K-means approach, which involves partitioning all the data into a specified number of clusters. In this note, we show the application of CA to an XPS image dataset. The use of Ward's method identified two major clusters in the image, where one of the clusters appeared as two subclusters. The K-means image based on two clusters agrees well with previous analyses of the same image. The average spectra corresponding to clusters helped confirm the assignments made by the CA algorithms, as did a multivariate curve resolution (MCR) analysis of the interior region identified in our cluster analysis. “Elbow” plots can help determine the number of clusters to keep in K-means clustering. The combination of the agglomerative and divisive forms of CA, where the first informs the second, can be effective in revealing the structures of XPS image datasets. The Procrustean bed is a metaphor for overfitting and underfitting in EDA.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138534748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of electrophoretic deposition of carbon nanotubes on carbon fiber on interfacial properties of the thermoplastic polyimide composite","authors":"Li Jian","doi":"10.1002/sia.7272","DOIUrl":"https://doi.org/10.1002/sia.7272","url":null,"abstract":"In order to improve the interfacial properties of carbon fiber/polyimide (CF/PI) composite, silanization reaction carbon nanotubes (CNTs) were introduced to the surface of carbon fiber by electrophoretic deposition to prepare CF/CNT/PI composite. The effects of carbon fiber surface treatment on the mechanical properties of the composites were studied. The results showed that the interlaminar shear strength and bending strength of the composite materials were increased by 11% and 9%, respectively. The scanning electron microscope and Atomic Force Microscope (AFM) was used to analyze the fine structure of composite interface phase. The results show that the introduction of CNTs creates an interface transition layer of CNTs reinforced PI resin between the fiber and the matrix.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135042704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparing three strategies for surface treatment of Mg coated by hexamethylene diamine tetra methylene phosphonic acid for corrosion protection","authors":"Hanaa Soliman, Fatma Abdel Mouez, Hoda Hussien, Abdel Salam Makhlouf, Guojiang Wan","doi":"10.1002/sia.7269","DOIUrl":"https://doi.org/10.1002/sia.7269","url":null,"abstract":"Manufacturing Mg and Mg‐based alloys with controllable degradation rate has always been a challenge. Surface modification is one of the best ways to acquire protection against corrosion. Previously, many approaches such as phosphating (Na 3 PO 4 ), fluoridation (HF), and alkalization (NaOH) treatments have been used to regulate the corrosion rate. Here, we compare the corrosion rates of 3‐surface modified Mg samples coated with hexamethylene diamine tetra methylene phosphonic (HMDTMPA). The protection of those different layers was ranked in the order: phosphate > alkaline > fluoridation treatment. The chemistry of those chemical conversion layers was discussed in the light of scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and X‐ray photoelectron spectroscopy (XPS). The mechanism of tailoring a protective film of HMDTMPA on phosphated Mg was discussed according to the ability of P to bridge the substrate with the coating.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135136844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep core level hard X‐ray photoelectron spectroscopy for catalyst characterization","authors":"Filippo Longo, Marin Nikolic, Andreas Borgschulte","doi":"10.1002/sia.7267","DOIUrl":"https://doi.org/10.1002/sia.7267","url":null,"abstract":"Abstract Heterogeneous catalysts are the crucial element for many catalytic processes. In most of the cases, the pivotal structure consists of catalytic metals/alloy particles supported by oxides. Knowledge of the interaction between metal and oxide is central to understand the structure–performance relationship of such systems. X‐ray photoelectron spectroscopy provides access to the chemical–physical properties of metal and oxide interface as well as polarization effects. The results are usually derived from changes of the measured binding energies based on initial state analysis. We propose to extend the analysis using photoelectron as well as Auger transition to include final state effects (Wagner/Hohlneichner plots). This gives additional information on the specific chemical neighborhood of the excited atom. Three archetypal systems are investigated by hard X‐ray photoelectron spectroscopy (HAXPES) to introduce two approaches to this analysis for the most common support elements Al and Si.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis and characterization of iron sulfide immobilized on Algerian halloysite clay (HKDD3) with enhanced removal of methylene blue from aqueous medium","authors":"Asma Hayoune, Hocine Akkari, Marcello Marelli, Valeria Pappalardo, Jia Yang, Muhammad Zubair","doi":"10.1002/sia.7268","DOIUrl":"https://doi.org/10.1002/sia.7268","url":null,"abstract":"The aim of this study is to functionalize an Algerian halloysite clay (kaolin Djebel Debbagh, HKDD3) with FeS nanoparticles by employing a hydrothermal approach and exploring its ability to remove methylene blue under visible light irradiation. The FeS‐HKDD3 photocatalyst was synthesized successfully and exhibited good crystallinity. Different techniques were used to characterize the produced photocatalyst, including XRD, STEM/EDS, TEM, BET, and UV–vis DRS in order to investigate its structure, morphology, and optical performance. The HKDD3 is a natural halloysite having a tubular shape with a length ranging from 500 nm to several micrometers and a diameter that is estimated from 50 to 100 nm. The iron sulfide nanoparticles are immobilized as cube aggregates on the surface of the halloysite. The visible range displayed a strong absorption of the obtained photocatalyst, with an estimated bandgap of 1.60 eV, according to UV–vis DRS findings. The results exhibited a higher efficiency toward synergic adsorption‐photocatalytic degradation effect for methylene blue dye removal.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135539971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muafia Akbar, Nauman Sadiq, Memoona Shakoor, Muhammad Shafique, Anum Tahir, Muhammad Zahid, Ghulam Mustafa
{"title":"Fabrication of molecularly imprinted polymer‐based interdigital sensor for L‐ascorbic acid","authors":"Muafia Akbar, Nauman Sadiq, Memoona Shakoor, Muhammad Shafique, Anum Tahir, Muhammad Zahid, Ghulam Mustafa","doi":"10.1002/sia.7266","DOIUrl":"https://doi.org/10.1002/sia.7266","url":null,"abstract":"The level of L‐ascorbic acid (AA) in various natural and artificial foods, medicines and other substances must be determined for biological and agricultural purposes. In this study, an AA‐imprinted poly (methacrylic acid)‐based receptor was synthesized by thermal free‐radical bulk polymerization for the detection of ascorbic acid using the methacrylic acid as monomer, ethylene glycol dimethacrylate (EGDMA) as cross‐linker, and azobisisobutyronitrile (AIBN) as initiator, in the presence of a porogenic solvent dimethyl sulfoxide (DMSO). The synthesized molecularly imprinted polymer (MIP) was used as a receptor. Immobilization of the receptor layer on IDEs provided a suitable sensor for AA detection by measuring changes in electrical parameters including inductance, capacitance, and resistance with the help of LCR meter. In the series and parallel inductance, the lowest detection limits were 0.13 and 0.001 ppm, respectively. While, for series and parallel capacitance, the lowest detection limits were 0.01548 and 1.3698 ppm, respectively. In the case of resistance, the lowest limit of detection was 0.0076 and 0.08121 ppm in series and parallel, respectively. The imprinted polymer‐based sensor showed sensitivity, selectivity, and reversibility for ascorbic acid.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative investigation on organosilicon film growth by cyclonic plasma using hexamethyldisilazane and hexamethyldisilazane/nitrogen gas mixture","authors":"Li‐Yu Wu, Shu‐Mei Wang, Ya‐Shin Ji, Chun Huang","doi":"10.1002/sia.7263","DOIUrl":"https://doi.org/10.1002/sia.7263","url":null,"abstract":"This study aimed to discover the surface characteristics of cyclonic plasma‐deposited films and the effect of nitrogen gas addition. The influence of nitrogen gas addition on the surface characteristics of organosilicon films in hexamethyldisilazane (HMDSN) and HMDSN/nitrogen (HMDSN/N 2 ) cyclonic plasmas at atmospheric pressure was evaluated. It was found that the addition of nitrogen gas is a crucial factor affecting organosilicon film growth in the plasma cyclone in one atmosphere. SEM, AFM, and ATR‐FTIR results indicated that on adding nitrogen gas, the surface morphology became rougher, the peak corresponding to the Si–O–Si group was detected at approximately 1050 cm −1 , the degree of porosity was relatively low, and the proportion of the SiCHx group decreased. In general, the surface energies of the films deposited in the HMDSN discharge and the HMDSN/N 2 gas mixture discharge exhibited similar features. SEM and AFM evaluations showed high roughness values of 44.5 nm for the film formation in the HMDSN/N 2 gas mixture discharge, while the films grown in the HMDSN discharge exhibited a relatively flat surface with a roughness of 24.5 nm. Based on ATR‐FTIR detection, cyclonic plasma‐deposited films deposited in the HMDSN discharge obtained organic moieties, while the films generated in the HMDSN/N 2 gas mixture discharge exhibited strong Si–O–Si absorption signals. A possible nano‐organosilicon film growth that prevails in atmospheric pressure plasma deposition is proposed based on atmospheric‐pressure plasma chemistry, nitrogen gas addition, and experimental observations.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136136049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chemical functionality of surfaces for the characteristic adsorption of melamine","authors":"Mohit Tiwari, Sudip K. Pattanayek","doi":"10.1002/sia.7265","DOIUrl":"https://doi.org/10.1002/sia.7265","url":null,"abstract":"The surface functionality leading to a high reversibility adsorption of melamine was determined. Four different silane coupling agents, namely, 3‐(tri‐methoxysilyl) propyl methacrylate (TMSPMA), n‐propyl tri‐methoxy‐silane (PTMS), 3‐(tri‐ethoxysilyl) propionitrile (TESPN), and tri‐methoxy‐(octadecyl) silane (OTMS) were taken for making chemical functionality methacrylate, short methyl, nitrile, and extended methyl group respectively. The adsorption behavior of melamine over the substrates with four functionalities was determined using quartz crystal microbalance (QCM). The adsorption kinetics and adsorption isotherms of the adsorption studies were analyzed. The initial adsorption rate depends on the hydrophobicity and roughness of the surfaces. However, the subsequent adsorption rate depends on the specific interaction. The data of equilibrium adsorbed mass at various equilibrium concentrations were fitted with the modified Brunauer–Emmett–Teller (BET) and Freundlich adsorption isotherms. The estimated model parameters were analyzed and compared with the reported parameters of the relevant systems. There is good agreement between our results and the reported results. In addition, very high adsorption with a very high binding constant was observed for the adsorption of melamine OTMS surface. On the other hand, high adsorption with an intermediate layer binding constant for the adsorption of melamine on the methacrylate surface was observed. Based on this, we propose using acrylate chemical functionality to develop molecularly imprinted polymer‐based melamine sensors.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135170821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Binbin Ding, Changjun Zhu, Tianming Wang, Lianbi Li, Zebin Li, Lin Cheng, Song Feng, Guoqing Zhang, Yuan Zang, Jichao Hu, Lei Li, Caijuan Xia
{"title":"Large‐area growth of monolayer MoS<sub>2</sub> by using atmospheric‐pressure chemical vapor deposition with nucleation controlling process","authors":"Binbin Ding, Changjun Zhu, Tianming Wang, Lianbi Li, Zebin Li, Lin Cheng, Song Feng, Guoqing Zhang, Yuan Zang, Jichao Hu, Lei Li, Caijuan Xia","doi":"10.1002/sia.7264","DOIUrl":"https://doi.org/10.1002/sia.7264","url":null,"abstract":"The epitaxial growth of high‐quality and large‐area monolayer (ML) MoS 2 has attracted widespread attention in recent years. Here, MoS 2 on Al 2 O 3 substrate was prepared by using atmospheric‐pressure chemical vapor deposition. The process parameters such as temperature difference and distance between MoO 3 and Al 2 O 3 , nucleation temperature, and heating rate were optimized. The high MoO 3 evaporation temperature facilitates Mo vapor transport to grow ML‐MoS 2 . The introduction of nucleation temperature facilitates the deposition of MoS 2 , and the morphology of the nucleation point is related to the amount of MoO 3‐x deposited on Al 2 O 3 . This process optimization method is also applicable to growth MoS 2 on SiO 2 . The ML‐MoS 2 with a size greater than 1 cm 2 was successfully fabricated on Al 2 O 3 and SiO 2 , which laid a foundation for the practical application of ML‐MoS 2 .","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135365583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}