{"title":"羟基在SnO2(110)表面吸附的结构、电子和热电性质:第一性原理研究","authors":"N. Bouchelarem, F. Bouamra, M. Derbal, M. Rérat","doi":"10.1002/sia.7261","DOIUrl":null,"url":null,"abstract":"Structural, electronic, and thermoelectric properties of bridging OH b and terminal OH t groups adsorbed on stoichiometric SnO 2 (110) surfaces have been investigated using density functional theory and semiclassical Boltzmann transport theory with effective core pseudopotential implemented in CRYSTAL17 program. Our results indicate that H and OH yield significant structural relaxation around the adsorption sites O 2c and Sn 5c . The results have shown that the absolute value of adsorption energy increases with decreasing the coverage from 1 to 1/4 monolayer. Mulliken charge analysis, band structures, and density of states were calculated and discussed. We found that H and OH adsorption increases the band gap energy from 2.81 eV for clean surfaces to 3.04, 2.95, and 2.89 eV with, respectively, 1, 1/2 and 1/4 monolayer surface coverages. Thermoelectric properties revealed that the presence of hydroxyl groups on the SnO 2 (110) surfaces may enhance the Seebeck coefficient, electrical conductivity, and electronic thermal conductivity.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, electronic, and thermoelectric properties of hydroxyl groups adsorption on SnO<sub>2</sub> (110) surface: A first‐principles study\",\"authors\":\"N. Bouchelarem, F. Bouamra, M. Derbal, M. Rérat\",\"doi\":\"10.1002/sia.7261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural, electronic, and thermoelectric properties of bridging OH b and terminal OH t groups adsorbed on stoichiometric SnO 2 (110) surfaces have been investigated using density functional theory and semiclassical Boltzmann transport theory with effective core pseudopotential implemented in CRYSTAL17 program. Our results indicate that H and OH yield significant structural relaxation around the adsorption sites O 2c and Sn 5c . The results have shown that the absolute value of adsorption energy increases with decreasing the coverage from 1 to 1/4 monolayer. Mulliken charge analysis, band structures, and density of states were calculated and discussed. We found that H and OH adsorption increases the band gap energy from 2.81 eV for clean surfaces to 3.04, 2.95, and 2.89 eV with, respectively, 1, 1/2 and 1/4 monolayer surface coverages. Thermoelectric properties revealed that the presence of hydroxyl groups on the SnO 2 (110) surfaces may enhance the Seebeck coefficient, electrical conductivity, and electronic thermal conductivity.\",\"PeriodicalId\":22062,\"journal\":{\"name\":\"Surface and Interface Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface and Interface Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7261\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sia.7261","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Structural, electronic, and thermoelectric properties of hydroxyl groups adsorption on SnO2 (110) surface: A first‐principles study
Structural, electronic, and thermoelectric properties of bridging OH b and terminal OH t groups adsorbed on stoichiometric SnO 2 (110) surfaces have been investigated using density functional theory and semiclassical Boltzmann transport theory with effective core pseudopotential implemented in CRYSTAL17 program. Our results indicate that H and OH yield significant structural relaxation around the adsorption sites O 2c and Sn 5c . The results have shown that the absolute value of adsorption energy increases with decreasing the coverage from 1 to 1/4 monolayer. Mulliken charge analysis, band structures, and density of states were calculated and discussed. We found that H and OH adsorption increases the band gap energy from 2.81 eV for clean surfaces to 3.04, 2.95, and 2.89 eV with, respectively, 1, 1/2 and 1/4 monolayer surface coverages. Thermoelectric properties revealed that the presence of hydroxyl groups on the SnO 2 (110) surfaces may enhance the Seebeck coefficient, electrical conductivity, and electronic thermal conductivity.
期刊介绍:
Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).