Xiufeng Gong, Jin Yao, Wanzhong Yin, Ningbo Song, Yulian Wang
{"title":"Effect of Surface Dissolution on the Floatability of Brucite in Three Anionic Collector Systems","authors":"Xiufeng Gong, Jin Yao, Wanzhong Yin, Ningbo Song, Yulian Wang","doi":"10.1002/sia.7355","DOIUrl":"https://doi.org/10.1002/sia.7355","url":null,"abstract":"This study investigated the relation between the solubility and floatability of the soluble mineral brucite, focusing on the concentration characteristics of dissolved Mg<jats:sup>2+</jats:sup> in brucite under three dissolution methods and the surface characteristics after dissolution. Some common rules of brucite flotation in three anionic collectors were discovered. Results of a flotation test showed that for three anionic collector systems of sodium oleate, sodium dodecyl sulfonate, and oxidized paraffin soap, the flotation recovery rate of brucite increased with the time of dissolution and decreased with the removal of dissolved Mg<jats:sup>2+</jats:sup>, but the flotation recovery rate is lower than that of untreated brucite. Inductively coupled plasma spectroscopy indicated that the content of dissolved Mg<jats:sup>2+</jats:sup> in brucite slurry increases with increasing brucite content or dissolution time. Zeta potential measurements showed that the ability of dissolved Mg<jats:sup>2+</jats:sup> to increase the surface potential of brucite follows the order of H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub> action > HCl action > H<jats:sub>2</jats:sub>O action. Adsorption capacity measurements showed that the presence of dissolved Mg<jats:sup>2+</jats:sup> after dissolution is not beneficial for the adsorption of the three collectors on the surface of brucite. The capacity of the adsorption collectors follows the order of brucite after H<jats:sub>2</jats:sub>O dissolution > brucite after HCl dissolution > brucite after H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub> dissolution. Scanning electron microscopy and X‐ray photoelectron spectroscopy analyses indicated that the surface dissolution promoted the dissolution of Mg<jats:sup>2+</jats:sup> on brucite surface in the solution, reducing the number of Mg sites on brucite surface and deteriorating the collection effect of the collector.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"35 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation and Properties of Mo/Ti/Sn Conductivity Conversion Coatings on 6063 Aluminum Alloy","authors":"Aihua Yi, Min Liu, Wenfang Li, Yuying Liu, Yeping Mo, Zhiquan Huang, Xiaolan Chen","doi":"10.1002/sia.7352","DOIUrl":"https://doi.org/10.1002/sia.7352","url":null,"abstract":"Conductivity chromium‐free conversion coatings on aluminum substrates were achieved by utilizing Na<jats:sub>2</jats:sub>SnO<jats:sub>3</jats:sub> and Mo/Ti solutions. The composition and morphology of the coatings were characterized using XPS, SEM, EDS, AFM, and Raman spectroscopies. The corrosion behavior of the coatings in 3.5‐wt% NaCl solution was investigated through a dynamic potential polarization method and EIS analysis. Mott–Schottky and UV–Vis analyses were used to determine the semiconductor properties of the coatings, including carrier concentration and band gap. The results revealed that the main components of the coating were Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, SnO<jats:sub>2</jats:sub>, MoO<jats:sub>3</jats:sub>, and MoO<jats:sub>2</jats:sub> and the coating presented a double‐layer structure, including a transition layer close to the substrate and a compact layer on the surface. The coating also exhibited the properties of a p‐type semiconductor. The electrical contact resistance value of adding Na<jats:sub>2</jats:sub>SnO<jats:sub>3</jats:sub> decreased from 0.4331 to 0.1343 Ω/in<jats:sup>2</jats:sup> (in 200 psi), while the band gap decreased from 2.281 to 2.232 eV.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"74 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonid A. Aslanov, Vladimir B. Zaitsev, Valery N. Zakharov, Igor K. Kudryavtsev, Vladimir M. Senyavin, Petr B. Lagov, Elena P. Romanteeva
{"title":"Nanosilicon Stabilized With Ligands: Effect of High‐Energy Proton Beam on Luminescent Properties","authors":"Leonid A. Aslanov, Vladimir B. Zaitsev, Valery N. Zakharov, Igor K. Kudryavtsev, Vladimir M. Senyavin, Petr B. Lagov, Elena P. Romanteeva","doi":"10.1002/sia.7354","DOIUrl":"https://doi.org/10.1002/sia.7354","url":null,"abstract":"Silicon nanopowders with nitrogen heterocyclic carbene (NHC) and butyl as stabilizing ligands were synthesized by bottom‐up chemical methods. Transmission electron microscopy (TEM) was used to obtain nanoparticle size distribution with 1.8–2.5‐nm average diameter. Optical characteristics (photoluminescence [PL] and infrared [IR] absorption spectra) of samples were investigated as fabricated and on different steps of irradiation by high‐energy 22.5‐MeV protons. The PL spectral changes are slightly different for two cases, but in general, we can see a decrease in luminescence amplitude with fluence growth up to 4·10<jats:sup>14</jats:sup> cm<jats:sup>−2</jats:sup>, mainly for NHC‐stabilized nanosilicon. Main mechanisms of radiation‐induced changes in nanosilicon sample optical properties are discussed by the joint use of PL and IR spectra analysis.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"9 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaekwang Lee, Hyunwoo Lim, Joo‐yeon Ha, Seungjae Lee, Heesoo Lee
{"title":"Structural Analysis and Electrical Property of Acid‐Treated MWCNT","authors":"Jaekwang Lee, Hyunwoo Lim, Joo‐yeon Ha, Seungjae Lee, Heesoo Lee","doi":"10.1002/sia.7353","DOIUrl":"https://doi.org/10.1002/sia.7353","url":null,"abstract":"The electrical properties of acid‐treated CNT were investigated in terms of functional group and microstructure. A mixture of HNO<jats:sub>3</jats:sub> and H<jats:sub>2</jats:sub>SO<jats:sub>4</jats:sub> was used to acid treatment of CNT, and acid‐treated CNTs were synthesized by the mixture for 0 to 5 h. In crystal structure analysis, as acid treatment time was increased, the intensity of graphite diffraction peak was decreased and shifted to lower angle. It indicates a decrease in the crystallinity of CNT surface and lattice contraction by loss of carbon atoms. The distribution of oxygen on CNT surface was observed by TEM analysis confirming that functional groups and structural defects were formed. I<jats:sub>D</jats:sub>/I<jats:sub>G</jats:sub> ratio and average distance between defects (L<jats:sub>D</jats:sub>) were calculated using Raman spectroscopy to analyze the structural characteristics of CNT, and the greatest decrease was identified from p‐CNT to 2h‐CNT, resulting in the formation of functional groups and the changes in structural defects on CNT surface by acid treatment in the initial stage. Bonding state on CNT surface was analyzed through XPS analysis, and functional groups such as CO and COH were confirmed in acid‐treated CNT. Sheet resistance was measured to analyze the electrical properties of CNT, and 3h‐CNT showed the lowest sheet resistance at 25.28 Ω.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"6 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tamerlan T. Magkoev, Yong Men, Reza Behjatmanesh‐Ardakani, Mohammadreza Elahifard, Vladimir T. Abaev, Petrakis Chalikidi, Taymuraz T. Magkoev, Oleg G. Ashkhotov
{"title":"Combined Experimental and Periodic DFT Study of the Size Dependence of Adsorption Properties of Oxide‐Supported Metal Nanoclusters: A Case of NO on Ni/Al2O3","authors":"Tamerlan T. Magkoev, Yong Men, Reza Behjatmanesh‐Ardakani, Mohammadreza Elahifard, Vladimir T. Abaev, Petrakis Chalikidi, Taymuraz T. Magkoev, Oleg G. Ashkhotov","doi":"10.1002/sia.7350","DOIUrl":"https://doi.org/10.1002/sia.7350","url":null,"abstract":"It is demonstrated by means of ultra high vacuum (UHV) surface‐sensitive techniques and periodic density functional theory (DFT) calculations that the electronic and NO− adsorption properties of nanosized Ni clusters deposited onto the α‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> (0001) surface significantly depend upon the size of the cluster. The properties of the Ni cluster of the size of 2 nm and lower are predominantly determined by the formation of the Ni/Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> interface bond notably polarized towards the oxide. As a result, the metal cluster acquires a net positive charge manifested by the bond strengthening of adsorbed NO compared to the bulk Ni substrate. With the increasing size of the cluster, the Ni/Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> interfacial bond depolarizes due to the growing of lateral Ni–Ni interaction. With a mean coverage of Ni on the alumina surface exceeding 0.25 equivalent monolayers, their properties in terms of adsorption behavior of NO resemble those that are characteristic for the bulk Ni substrate. Such a size dependence offers an opportunity to tune the properties of metal clusters and the metal/oxide system as a whole, for example, to achieve the required electronic and adsorption‐reaction properties.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"13 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142187372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three‐dimensional carbon nanotube framework enables low‐cost LiFe5O8 anode material for high‐performance lithium‐ion batteries","authors":"Lei Li, Jinsheng Huo, Qiwen Ran, Xingquan Liu","doi":"10.1002/sia.7347","DOIUrl":"https://doi.org/10.1002/sia.7347","url":null,"abstract":"LiFe<jats:sub>5</jats:sub>O<jats:sub>8</jats:sub> is regarded as a promising material, which is used as anode for lithium‐ion batteries on account of its lower cost and higher theoretical capacity. However, its practical applications are hindered by the low electron transfer rate, poor cycling performance, and huge magnification of lattice volume. In this work, a LiFe<jats:sub>5</jats:sub>O<jats:sub>8</jats:sub>/carbon nanotubes (CNTs) composite anode is designed to realize the ideal anode for low‐cost lithium‐ion batteries, showing broad commercial application prospects. It is found that the three‐dimensional conductive network of CNTs is used to accelerate electron transfer rate within the LiFe<jats:sub>5</jats:sub>O<jats:sub>8</jats:sub> particles, thereby significantly reducing the reversible reaction barrier (Fe/Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>). In addition, it can also alleviate the volume change of electrode, which maintains a stable Li<jats:sup>+</jats:sup> insertion/extraction behavior during long‐term cycles. As a consequence, there is still a high capacity (427.3 mAh g<jats:sup>−1</jats:sup>) of the LiFe<jats:sub>5</jats:sub>O<jats:sub>8</jats:sub>/CNTs 3% anode reserved after 50 cycles at 0.5 C whereas the bare LiFe<jats:sub>5</jats:sub>O<jats:sub>8</jats:sub> anode only delivers a low capacity of 220.6 mAh g<jats:sup>−1</jats:sup> along with a poor cycling stability. This work highlights the outstanding contribution of electronic conductivity toward the electrochemical performance of LiFe<jats:sub>5</jats:sub>O<jats:sub>8</jats:sub> anode and provides a low‐cost and commercially applicable composite anode for developing lower cost lithium‐ion batteries.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"58 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ali Reza Sarikhani, Mohammad Reza Salehi, Seyedeh Leila Mortazavifar, Mojtaba Shahraki, Ebrahim Abiri
{"title":"Design and optimization of hexagonal tungsten ring metasurface perfect absorbers with circuit model","authors":"Ali Reza Sarikhani, Mohammad Reza Salehi, Seyedeh Leila Mortazavifar, Mojtaba Shahraki, Ebrahim Abiri","doi":"10.1002/sia.7346","DOIUrl":"https://doi.org/10.1002/sia.7346","url":null,"abstract":"In this paper, a perfect absorber (PA) based on tungsten is proposed to include hexagonal‐shaped metasurface absorbers with varying hole sizes ranging from quadrangular to circular, allowing them to cover a wide wavelength spectrum. The study investigates the effects of various parameters, including the number of sides of the inner hole, on the absorber's performance and identifies the most suitable absorber by introducing an equivalent circuit. The outcomes of full‐wave numerical simulations primarily based on the finite element method (FEM) highly correspond to the final results of the circuit model. Additionally, the circuit model significantly reduces computation time and requires less storage compared with full‐wave simulations. The results show that the hexagonal‐square metasurface absorber achieves exceptional absorption rates, with an average of 99.9% in the 431 to 532 nm wavelength range and over 90% in the 300 to 915 nm range. The hexagonal‐hexagonal metasurface absorber also exhibits high absorption rates, with an average of over 99% in the 431 to 518 nm and 700 to 780 nm ranges, and over 90% in the 300 to 940 nm range. The absorption performance of the proposed hexagonal‐circle metasurface absorber is also remarkable, with an absorption value of over 99% in the 670 to 771 nm range and above 90% in the 365 to 991 nm range. These models can be utilized to design and simulate other subwavelength absorbers in a broad frequency range, including terahertz and visible light, making them suitable for various applications.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"28 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer Stefani Weber, Michael Cristian Goldbeck, Vanessa Piroli, Carla Daniela Boeira, Bruna Louise Perotti, Newton Kiyoshi Fukumasu, Fernando Alvarez, Alexandre Fassini Michels, Carlos Alejandro Figueroa
{"title":"Influence of the base pressure in deposition of a‐SiCx interlayers for adhesion of Diamond‐Like Carbon on metallic alloy","authors":"Jennifer Stefani Weber, Michael Cristian Goldbeck, Vanessa Piroli, Carla Daniela Boeira, Bruna Louise Perotti, Newton Kiyoshi Fukumasu, Fernando Alvarez, Alexandre Fassini Michels, Carlos Alejandro Figueroa","doi":"10.1002/sia.7345","DOIUrl":"https://doi.org/10.1002/sia.7345","url":null,"abstract":"Diamond‐like carbon (DLC) is an amorphous material widely used in industrial applications due to its chemical, mechanical, and tribological properties and, also, for decorative purposes. However, its low adhesion to ferrous alloys reduces its effectiveness in certain applications, necessitating the use of adhesion interlayers to reduce stresses at the interfaces and enhance the density of strong bonds. In this context, the factors that promote good adhesion in this system and specify the parameters must be understood in detail. Thus, the present study aims to assess the influence of the base pressure on the deposition of an amorphous silicon carbide adhesion interlayer between DLC coating and a ferrous alloy substrate. Microstructural, physicochemical, morphological, and mechanotribological analyses were conducted to understand the adhesion behavior in terms of structural and chemical aspects. In addition to the influence of the interlayer thickness, the elemental Si/C ratios and the relative oxygen content have an impact on the maximum load supported by the coatings, as well as the different delamination mechanisms generated in adhesion tests.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"71 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"X‐ray standing wave assisted XANES for depth dependent chemical state analysis of Cr in Cr2O3/Cr bilayer structure","authors":"Ayushi Trivedi, Md. Akhlak Alam, Ajay Khooha, Rajnish Dhawan, Rajendra Kumar Sharma, Shilpa Tripathi, Manoj Kumar Tiwari","doi":"10.1002/sia.7342","DOIUrl":"https://doi.org/10.1002/sia.7342","url":null,"abstract":"We report the detailed depth‐dependent structural and chemical analysis of the Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/Cr bilayer structure deposited on Si ˂100˃ substrate. The non‐destructive simultaneous X‐ray reflectivity and grazing incidence X‐ray fluorescence measurements were used for this purpose. Corresponding variation in the chemical state of Cr atoms as a function of depth has been studied using X‐ray standing wave (XSW) assisted X‐ray absorption near edge structure (XANES) measurements. Various oxidation states of Cr atoms present in the Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/Cr bilayer structure were determined using X‐ray photoelectron spectroscopy (XPS). Depth‐resolved XANES measurements confirmed the presence of chromium oxide (Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>) and hydroxide (Cr (OH)<jats:sub>3</jats:sub>) at the top surface of the Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/Cr bilayer structure. The results also reveal the presence of metallic Cr along with its compounds Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and Cr (OH)<jats:sub>3</jats:sub> at the interface medium, showing significant mixing between the Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> and Cr layers. Our results clearly demonstrate that the XSW assisted XANES technique is extremely efficient for determining the variation of chemical states at the surface, interface, and different depths of a thin film structure. Such types of analysis are particularly useful for differentiating the presence of a metal from its own oxides, even at higher depths inside a thin film medium.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"15 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonh Yago Erikson Santos, Iago Lemos Dias, Ronaldo Lima Rezende, Givanilson Brito de Oliveira, Pedro Cardoso da Silva Neto, Fabiana Magalhães Teixeira Mendes, Roberto Hübler, Eduardo Kirinus Tentardini
{"title":"Influence of aluminum addition on structure, hardness, and oxidation resistance of Ta1−xAlxN thin films","authors":"Jonh Yago Erikson Santos, Iago Lemos Dias, Ronaldo Lima Rezende, Givanilson Brito de Oliveira, Pedro Cardoso da Silva Neto, Fabiana Magalhães Teixeira Mendes, Roberto Hübler, Eduardo Kirinus Tentardini","doi":"10.1002/sia.7343","DOIUrl":"https://doi.org/10.1002/sia.7343","url":null,"abstract":"Ta<jats:sub>1−x</jats:sub>Al<jats:sub>x</jats:sub>N thin films with 5, 15, and 40 at.% Al addition were co‐deposited by reactive magnetron sputtering and characterized by Rutherford backscattering spectroscopy (RBS), grazing angle X‐ray diffraction (GAXRD), X‐ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), nanohardness, and oxidation tests. GAXRD and XPS analyses showed, regardless of the % Al added, the non‐existence of ternary nitride Ta<jats:sub>1−x</jats:sub>Al<jats:sub>x</jats:sub>N, but always as individual binary nitrides, TaN and AlN. Sample TaAlN_15 obtained the highest hardness and H<jats:sup>3</jats:sup>/E<jats:sup>2</jats:sup> values, possibly due to the AlN grains presence, which were efficient in distorting the TaN lattice. All samples failed oxidation tests at 873 K, showing that the Al addition was not efficient in improving this property for tantalum aluminum nitride thin films.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"6 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141717867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}