{"title":"Three‐dimensional carbon nanotube framework enables low‐cost LiFe5O8 anode material for high‐performance lithium‐ion batteries","authors":"Lei Li, Jinsheng Huo, Qiwen Ran, Xingquan Liu","doi":"10.1002/sia.7347","DOIUrl":null,"url":null,"abstract":"LiFe<jats:sub>5</jats:sub>O<jats:sub>8</jats:sub> is regarded as a promising material, which is used as anode for lithium‐ion batteries on account of its lower cost and higher theoretical capacity. However, its practical applications are hindered by the low electron transfer rate, poor cycling performance, and huge magnification of lattice volume. In this work, a LiFe<jats:sub>5</jats:sub>O<jats:sub>8</jats:sub>/carbon nanotubes (CNTs) composite anode is designed to realize the ideal anode for low‐cost lithium‐ion batteries, showing broad commercial application prospects. It is found that the three‐dimensional conductive network of CNTs is used to accelerate electron transfer rate within the LiFe<jats:sub>5</jats:sub>O<jats:sub>8</jats:sub> particles, thereby significantly reducing the reversible reaction barrier (Fe/Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>). In addition, it can also alleviate the volume change of electrode, which maintains a stable Li<jats:sup>+</jats:sup> insertion/extraction behavior during long‐term cycles. As a consequence, there is still a high capacity (427.3 mAh g<jats:sup>−1</jats:sup>) of the LiFe<jats:sub>5</jats:sub>O<jats:sub>8</jats:sub>/CNTs 3% anode reserved after 50 cycles at 0.5 C whereas the bare LiFe<jats:sub>5</jats:sub>O<jats:sub>8</jats:sub> anode only delivers a low capacity of 220.6 mAh g<jats:sup>−1</jats:sup> along with a poor cycling stability. This work highlights the outstanding contribution of electronic conductivity toward the electrochemical performance of LiFe<jats:sub>5</jats:sub>O<jats:sub>8</jats:sub> anode and provides a low‐cost and commercially applicable composite anode for developing lower cost lithium‐ion batteries.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7347","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
LiFe5O8 is regarded as a promising material, which is used as anode for lithium‐ion batteries on account of its lower cost and higher theoretical capacity. However, its practical applications are hindered by the low electron transfer rate, poor cycling performance, and huge magnification of lattice volume. In this work, a LiFe5O8/carbon nanotubes (CNTs) composite anode is designed to realize the ideal anode for low‐cost lithium‐ion batteries, showing broad commercial application prospects. It is found that the three‐dimensional conductive network of CNTs is used to accelerate electron transfer rate within the LiFe5O8 particles, thereby significantly reducing the reversible reaction barrier (Fe/Fe3O4). In addition, it can also alleviate the volume change of electrode, which maintains a stable Li+ insertion/extraction behavior during long‐term cycles. As a consequence, there is still a high capacity (427.3 mAh g−1) of the LiFe5O8/CNTs 3% anode reserved after 50 cycles at 0.5 C whereas the bare LiFe5O8 anode only delivers a low capacity of 220.6 mAh g−1 along with a poor cycling stability. This work highlights the outstanding contribution of electronic conductivity toward the electrochemical performance of LiFe5O8 anode and provides a low‐cost and commercially applicable composite anode for developing lower cost lithium‐ion batteries.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.