ACS Nano最新文献

筛选
英文 中文
Highly Transparent and Transferable Ultralong Carbon Nanotube Networks for Transparent Wearable Electronics 用于透明可穿戴电子设备的高透明可转移超长碳纳米管网络
IF 17.1 1区 材料科学
ACS Nano Pub Date : 2024-11-19 DOI: 10.1021/acsnano.4c15342
Fei Wang, Kangkang Wang, Ziyang Chang, Huarun Liang, Qinyuan Jiang, Aike Xi, Yanlong Zhao, Siming Zhao, Khaixien Leu, Xueke Wu, Run Li, Ya Huang, Yingying Zhang, Rufan Zhang
{"title":"Highly Transparent and Transferable Ultralong Carbon Nanotube Networks for Transparent Wearable Electronics","authors":"Fei Wang, Kangkang Wang, Ziyang Chang, Huarun Liang, Qinyuan Jiang, Aike Xi, Yanlong Zhao, Siming Zhao, Khaixien Leu, Xueke Wu, Run Li, Ya Huang, Yingying Zhang, Rufan Zhang","doi":"10.1021/acsnano.4c15342","DOIUrl":"https://doi.org/10.1021/acsnano.4c15342","url":null,"abstract":"Recent advances in transparent wearable electronics highlighted the need for flexible conductive layers with high transmittance. Carbon nanotubes (CNTs) are ideal candidates for constructing transparent conductive networks due to their excellent flexibility, desirable optical properties, and outstanding electrical characteristics. However, their performance is severely degraded by the junction resistance between individual CNTs. Herein, we prepared nearly invisible and transferable ultralong CNT conductive networks with high transmittance (&gt;99% at 550 nm). The centimeter-scale length of ultralong CNTs facilitated the successful assembly of conductive and suspended networks with a minimal thickness, absorption area, and junction density, enabling ultrahigh transmittance and transferability. Further, we developed an ultralong CNT-based flexible and transparent pressure sensor to verify their practical value. The sensor exhibited a high sensitivity (225.11 kPa<sup>–1</sup>), a broad operating range (up to 160 kPa), a rapid response time (11 ms), and robust stability over 10,000 cycles, outperforming most state-of-the-art transparent pressure sensors. This work shows the promising application potential of ultralong CNTs in high-performance transparent wearable electronics.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"63 1","pages":""},"PeriodicalIF":17.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142673149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lattice Expanded Titania as an Excellent Anode for an Aqueous Zinc-Ion Battery Enabled by a Highly Reversible H+-Promoted Zn2+ Intercalation. 通过高度可逆的 H+ 促进 Zn2+ 互钙化作用,晶格扩张的二氧化钛成为锌-离子水电池的优良阳极。
IF 15.8 1区 材料科学
ACS Nano Pub Date : 2024-11-18 DOI: 10.1021/acsnano.4c09999
Chao Geng, Pengfei Zhang, Jin-Ming Wu, Jiayi Qin, Wei Wen
{"title":"Lattice Expanded Titania as an Excellent Anode for an Aqueous Zinc-Ion Battery Enabled by a Highly Reversible H<sup>+</sup>-Promoted Zn<sup>2+</sup> Intercalation.","authors":"Chao Geng, Pengfei Zhang, Jin-Ming Wu, Jiayi Qin, Wei Wen","doi":"10.1021/acsnano.4c09999","DOIUrl":"10.1021/acsnano.4c09999","url":null,"abstract":"<p><p>Aqueous Zn-ion batteries have garnered significant attention as promising and safe energy storage systems. Due to the inevitable dendrite and corrosion in metallic Zn anodes, alternative anodes of intercalation-type materials are desirable, but they still suffer from low energy efficiency, unsatisfactory capacity, and insufficient cycle life. Here, we develop a high-performance anode for aqueous Zn-ion batteries via a lattice expansion strategy in combination with a Zn<sup>2+</sup>/H<sup>+</sup> synergistic mechanism. The anatase TiO<sub>2</sub> with expanded lattice exhibits an appropriate deintercalation potential of 0.18 V vs Zn/Zn<sup>2+</sup> and a high reversible capacity (227 mAh g<sup>-1</sup> at 2.04 A g<sup>-1</sup>) with an outstanding rate capability and excellent cycle stability. The high electrochemical performance is attributed to a decrease in the Zn<sup>2+</sup>/H<sup>+</sup> diffusion barriers, which results from lattice expansion and also a H<sup>+</sup>-promoted Zn<sup>2+</sup> intercalation effect. The anode intercalates Zn<sup>2+</sup>/H<sup>+</sup> via a solid-solution mechanism with a minor volume change, which contributes to the high reversibility and thus high energy efficiency. When paired with different types of cathodes, including NV, I<sub>2</sub>, and activated carbon, to construct corresponding full cells, high specific energy, high specific power, long cycle life, and extremely high energy efficiency can be achieved. This study provides a prospect for developing high-performance Zn-ion batteries.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast Ion Transport in 2D Confined MXene for Improved Electrochemical Performance: Boron-Atom-Substituted -OH Termination. 改善电化学性能的二维封闭 MXene 中的超快离子传输:硼原子取代 -OH 终止。
IF 15.8 1区 材料科学
ACS Nano Pub Date : 2024-11-18 DOI: 10.1021/acsnano.4c12874
Zhaoxi Liu, Yapeng Tian, Jian Yang, Song Xu, Qingyong Tian, Pengfei Yan, Buxing Han, Qun Xu
{"title":"Ultrafast Ion Transport in 2D Confined MXene for Improved Electrochemical Performance: Boron-Atom-Substituted -OH Termination.","authors":"Zhaoxi Liu, Yapeng Tian, Jian Yang, Song Xu, Qingyong Tian, Pengfei Yan, Buxing Han, Qun Xu","doi":"10.1021/acsnano.4c12874","DOIUrl":"https://doi.org/10.1021/acsnano.4c12874","url":null,"abstract":"<p><p>Regulating the surface termination of a confined space to achieve ultrafast ion transport remains an ongoing challenge. Two-dimensional (2D) MXenes possess adjustable structures and interlayer spacing, which provide an ideal platform for in-depth investigation of ion transport in 2D confined space; however, the strong interaction of the negatively charged terminations in MXenes hinders the transport of intercalated cations. In this work, we proposed a strategy that precisely regulates the surface modification of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene with the weak polarity of boron atoms (SCB-MXene) via the distinct effect of supercritical CO<sub>2</sub>. This not only could effectively substitute -OH termination in MXene but also can prevent the loss of -O active sites, and then, both ultrafast ion transport and high volumetric capacitance can be achieved simultaneously. Ideally, a volumetric capacitance up to 742.7 C cm<sup>-3</sup> at 1000 mV s<sup>-1</sup> for the SCB-MXene film as pseudocapacitive materials that provides an energy density of 66.3 Wh L<sup>-1</sup> even at an ultrahigh power density of 132.5 kW L<sup>-1</sup> is obtained, which is a prominent record of energy density and power density reported up to now. Subsequently, it can be used in large-scale energy storage and conversion devices.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unconventional Optical Matter of Hybrid Metal-Dielectric Nanoparticles at Interfaces. 混合金属-电介质纳米粒子在界面上的非常规光学物质。
IF 15.8 1区 材料科学
ACS Nano Pub Date : 2024-11-18 DOI: 10.1021/acsnano.4c10418
Boris Louis, Chih-Hao Huang, Marc Melendez, Ana Sánchez-Iglesias, Jorge Olmos-Trigo, Sudipta Seth, Susana Rocha, Rafael Delgado-Buscalioni, Luis M Liz-Marzán, Manuel I Marqués, Hiroshi Masuhara, Johan Hofkens, Roger Bresolí-Obach
{"title":"Unconventional Optical Matter of Hybrid Metal-Dielectric Nanoparticles at Interfaces.","authors":"Boris Louis, Chih-Hao Huang, Marc Melendez, Ana Sánchez-Iglesias, Jorge Olmos-Trigo, Sudipta Seth, Susana Rocha, Rafael Delgado-Buscalioni, Luis M Liz-Marzán, Manuel I Marqués, Hiroshi Masuhara, Johan Hofkens, Roger Bresolí-Obach","doi":"10.1021/acsnano.4c10418","DOIUrl":"https://doi.org/10.1021/acsnano.4c10418","url":null,"abstract":"<p><p>Optical matter, a transient arrangement formed by the interaction of light with micro/nanoscale objects, provides responsive and highly tunable materials that allow for controlling and manipulating light and/or matter. A combined experimental and theoretical exploration of optical matter is essential to advance our understanding of the phenomenon and potentially design applications. Most studies have focused on nanoparticles composed of a single material (either metallic or dielectric), representing two extreme regimes, one where the gradient force (dielectric) and one where the scattering force (metallic) dominates. To understand their role, it is important to investigate hybrid materials with different metallic-to-dielectric ratios. Here, we combine numerical calculations and experiments on hybrid metal-dielectric core-shell particles (200 nm gold spheres coated with silica shells with thicknesses ranging from 0 to 100 nm). We reveal how silica shell thickness critically influences the essential properties of optical binding, such as interparticle distance, reducing it below the anticipated optical binding length. Notably, for silica shells thicker than 50 nm, we observed a transition from a linear arrangement perpendicular to polarization to a hexagonal arrangement accompanied by a circular motion. Further, the dynamic swarming assembly changes from the conventional dumbbell-shaped to lobe-like morphologies. These phenomena, confirmed by both experimental observations and dynamic numerical calculations, demonstrate the complex dynamics of optical matter and underscore the potential for tuning its properties for applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual-Asymmetric Janus Membranes Based on Two-Dimensional Nanowebs with Superspreading Surface for High-Performance Desalination. 基于具有超宽表面的二维纳米网的双对称 Janus 膜,用于高性能海水淡化。
IF 15.8 1区 材料科学
ACS Nano Pub Date : 2024-11-18 DOI: 10.1021/acsnano.4c11745
Ming Yang, Ni Yao, Xiaoxi Li, Jianyong Yu, Shichao Zhang, Bin Ding
{"title":"Dual-Asymmetric Janus Membranes Based on Two-Dimensional Nanowebs with Superspreading Surface for High-Performance Desalination.","authors":"Ming Yang, Ni Yao, Xiaoxi Li, Jianyong Yu, Shichao Zhang, Bin Ding","doi":"10.1021/acsnano.4c11745","DOIUrl":"10.1021/acsnano.4c11745","url":null,"abstract":"<p><p>Distillation membranes with hydrophobic surfaces and defined pores are considered a promising solution for seawater desalination. Most existing distillation membranes exhibit three-dimensional (3D) stacking bulk structures, where the zigzag water-repellent channels often lead to limited permeability and high energy costs. Here, we created two-dimensional nanowebs directly from the polymer/sol solution to construct dual-asymmetric Janus membranes. By tailoring the phase separation rate, the polymer phase evolved into continuous hydrophilic webs in situ weld on the microporous hydrophobic layer. The webs possess true-nanoscale architectures (internal fiber diameter of ∼20 nm, pore size of ∼140 nm) with enhanced roughness, serving as a superspreading surface to reach a water contact angle of 0° in 1.7 s. Benefiting from the architecture and wettability dual asymmetries, the obtained Janus membrane shows high-efficiency desalination performance (salt rejection >99%, flux of 11 kg m<sup>-2</sup> h<sup>-1</sup>, and energy efficiency of 79%) with a thickness of 6.7 μm. Such a fascinating nanofibrous web-based Janus membrane may inspire the design of advanced liquid separation materials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic-Scale Dynamic Mechanisms of Embedded MoS2 Wires. 嵌入式 MoS2 金属丝的原子级动态机制。
IF 15.8 1区 材料科学
ACS Nano Pub Date : 2024-11-18 DOI: 10.1021/acsnano.4c11656
Gyeong Hee Ryu, Gang Seob Jung, Jamie H Warner
{"title":"Atomic-Scale Dynamic Mechanisms of Embedded MoS<sub>2</sub> Wires.","authors":"Gyeong Hee Ryu, Gang Seob Jung, Jamie H Warner","doi":"10.1021/acsnano.4c11656","DOIUrl":"https://doi.org/10.1021/acsnano.4c11656","url":null,"abstract":"<p><p>Nanowires composed of a 1:1 stoichiometry of transition metals and chalcogen ions can be fabricated from two-dimensional transition metal dichalcogenides (TMDs) by using electron beam irradiation. Wires fabricated through in situ experiments can be geometrically connected to TMD sheets in various ways, and their physical properties can vary accordingly. Understanding the structural transformation caused by electron beams is critical for designing wire-sheet structures for nanoelectronics. In this study, we report the behavior of nanowires formed inside a monolayer MoS<sub>2</sub> sheet by combining phase-contrast images and large-scale atomistic modeling. We investigate the effect of vacancies on the dynamic evolution of wires, such as rotations with different edge structures and breaking, by considering the interactions between MoS wires and MoS<sub>2</sub> nanosheets. The obtained insights can be applied to other monolayer TMDs to guide the behavior of TMD wires and fabricate favorable geometries for various applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrochromic Effect of Perovskite-Polymer Composites. 透辉石-聚合物复合材料的水致变色效应
IF 15.8 1区 材料科学
ACS Nano Pub Date : 2024-11-18 DOI: 10.1021/acsnano.4c09930
Rui Gong, Feng Wang, Jin Cheng, Yani Lu, Renchao Hu, Hongjie Huang, Baofu Ding, Hong Wang
{"title":"Hydrochromic Effect of Perovskite-Polymer Composites.","authors":"Rui Gong, Feng Wang, Jin Cheng, Yani Lu, Renchao Hu, Hongjie Huang, Baofu Ding, Hong Wang","doi":"10.1021/acsnano.4c09930","DOIUrl":"https://doi.org/10.1021/acsnano.4c09930","url":null,"abstract":"<p><p>Hydrochromic materials undergo magical color changes when interacting with water and are receiving widespread attention for their frontier applications such as sensing and information security. The hydrochromic effect is observable in perovskite materials via the mechanism of water-induced fluorescence quenching. However, due to water isolation, achieving a hydrochromic effect in perovskite-polymer composite remains elusive, notwithstanding its importance as a potentially commercial-ready material. Here, we demonstrate a hydrochromic effect of perovskite-polymer-based porous composite via a nonsolvent-induced phase separation method, comprising of FA<sub>2</sub>PbBr<sub>4</sub>/poly(vinylidene fluoride) (FA = formamidinium). The naturally formed pores serve as microchannels, facilitating moisture diffusion. The penetrated water induces a phase transition of perovskite material from the nonfluorescent two-dimensional FA<sub>2</sub>PbBr<sub>4</sub> to the fluorescent three-dimensional FAPbBr<sub>3</sub>. This work has developed the hydrochromic perovskite-polymer composites, enabling various commercial-ready chromatic applications as conceptually demonstrated custom-made fingerprint labels, quick response code anticounterfeiting labels, encrypted document protections, and water-ink inkjet printing.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Fidelity Transfer of 2D Semiconductors and Electrodes for van der Waals Devices. 用于范德华器件的二维半导体和电极的高保真转移。
IF 15.8 1区 材料科学
ACS Nano Pub Date : 2024-11-18 DOI: 10.1021/acsnano.4c10551
Lingxiao Yu, Minglang Gao, Qian Lv, Hanyuan Ma, Jingzhi Shang, Zheng-Hong Huang, Zheng Sun, Ting Yu, Feiyu Kang, Ruitao Lv
{"title":"High-Fidelity Transfer of 2D Semiconductors and Electrodes for van der Waals Devices.","authors":"Lingxiao Yu, Minglang Gao, Qian Lv, Hanyuan Ma, Jingzhi Shang, Zheng-Hong Huang, Zheng Sun, Ting Yu, Feiyu Kang, Ruitao Lv","doi":"10.1021/acsnano.4c10551","DOIUrl":"https://doi.org/10.1021/acsnano.4c10551","url":null,"abstract":"<p><p>As traditional silicon-based materials almost reach their limits in the post-Moore era, two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been regarded as next-generation semiconductors for high-performance electrical and optical devices. Chemical vapor deposition (CVD) is a widely used technique for preparing large-area and high-quality TMDCs. Yet, it suffers from the challenge of transfer due to the strong interaction between 2D materials and substrates. The traditional PMMA-assisted wet etching method tends to induce damage, wrinkles, and inevitable polymer residues. In this work, we propose an etch-free and clean transfer method via a water intercalation strategy for TMDCs, ensuring a high-fidelity, wrinkle-free, and crack-free transfer with negligible residues. Furthermore, metal electrodes can also be transferred via this method and back-gate field-effect transistors (FETs) based on CVD-grown monolayer WSe<sub>2</sub> with van der Waals (vdW) metal/semiconductor contacts are fabricated. Compared to the PMMA-assisted transfer method (∼1.2 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup> hole mobility with ∼2 × 10<sup>6</sup> ON/OFF ratio), our high-fidelity transfer method significantly enhances the electrical performance of WSe<sub>2</sub> FET over one order of magnitude, achieving a hole mobility of ∼43 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup> and a high ON/OFF ratio of ∼5 × 10<sup>7</sup> in air at room temperature.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Cost, Eco-Friendly, and High-Performance 3D Laser-Induced Graphene Evaporator for Continuous Solar-Powered Water Desalination. 用于连续太阳能海水淡化的低成本、环保、高性能三维激光诱导石墨烯蒸发器。
IF 15.8 1区 材料科学
ACS Nano Pub Date : 2024-11-18 DOI: 10.1021/acsnano.4c12553
Truong-Son Dinh Le, Dongwook Yang, Han Ku Nam, Younggeun Lee, Chwee Teck Lim, Bong Jae Lee, Seung-Woo Kim, Young-Jin Kim
{"title":"Low-Cost, Eco-Friendly, and High-Performance 3D Laser-Induced Graphene Evaporator for Continuous Solar-Powered Water Desalination.","authors":"Truong-Son Dinh Le, Dongwook Yang, Han Ku Nam, Younggeun Lee, Chwee Teck Lim, Bong Jae Lee, Seung-Woo Kim, Young-Jin Kim","doi":"10.1021/acsnano.4c12553","DOIUrl":"10.1021/acsnano.4c12553","url":null,"abstract":"<p><p>Water scarcity has become a global challenge attributed to climate change, deforestation, population growth, and increasing water demand. While advanced water production plants are prevalent in urban areas, remote islands and sparsely populated regions face significant obstacles in establishing such technologies. Consequently, there is an urgent need for efficient, affordable, and sustainable water production technologies in these areas. Herein, we present a facile approach utilizing an ultrashort-pulsed laser to directly convert cotton fabric into graphene under ambient conditions. The resulting laser-induced graphene (LIG) demonstrates the highest light absorption efficiency of 99.0% and a broad absorption range (250-2500 nm). As an excellent solar absorber, LIG on cotton fabric can efficiently absorb 98.6% of the total solar irradiance and its surface temperature can reach 84.5 °C under sunlight without optical concentration. Moreover, we propose a cost-effective 3D LIG evaporator (LIGE) for continuous solar-powered desalination. This innovative design effectively mitigates salt formation issues and enhances the steam generation efficiency. The water evaporation rate and the solar-to-vapor conversion efficiency are measured to be around 1.709 kg m<sup>-2</sup> h<sup>-1</sup> and 95.1%, respectively, which surpass those reported in previous studies. The simplicity, durability, and continuous operational capability of the 3D LIGE offer promising prospects to address the growing challenges in global water scarcity.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to "Cobalt Ditelluride Meets Tellurium Vacancy: An Efficient Catalyst as a Multifunctional Polysulfide Mediator toward Robust Lithium-Sulfur Batteries". 更正 "二碲化钴与碲空位:一种作为多功能多硫化物媒介的高效催化剂,可用于制造稳健的锂硫电池"。
IF 15.8 1区 材料科学
ACS Nano Pub Date : 2024-11-18 DOI: 10.1021/acsnano.4c14667
Qianhong Gong, Dawei Yang, Huiping Yang, Konglin Wu, Jie Zhang, Wei Bi, Jiefeng Diao, Canhuang Li, Jing Yu, Chao Yue Zhang, Mengyao Li, Graeme Henkelman, Jordi Arbiol, Qiaobao Zhang, Andreu Cabot
{"title":"Correction to \"Cobalt Ditelluride Meets Tellurium Vacancy: An Efficient Catalyst as a Multifunctional Polysulfide Mediator toward Robust Lithium-Sulfur Batteries\".","authors":"Qianhong Gong, Dawei Yang, Huiping Yang, Konglin Wu, Jie Zhang, Wei Bi, Jiefeng Diao, Canhuang Li, Jing Yu, Chao Yue Zhang, Mengyao Li, Graeme Henkelman, Jordi Arbiol, Qiaobao Zhang, Andreu Cabot","doi":"10.1021/acsnano.4c14667","DOIUrl":"https://doi.org/10.1021/acsnano.4c14667","url":null,"abstract":"","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":15.8,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信