二维纳米电子学中的接触物理:ii型Weyl和Dirac半金属的比较研究。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-22 DOI:10.1021/acsnano.5c09640
Juwon Han,Hyeonwoo Lee,Youseung Lee,Taehyun Kim,Seokyeon Shin,Youngjoon Lee,Soon-Yong Kwon,Changwook Jeong
{"title":"二维纳米电子学中的接触物理:ii型Weyl和Dirac半金属的比较研究。","authors":"Juwon Han,Hyeonwoo Lee,Youseung Lee,Taehyun Kim,Seokyeon Shin,Youngjoon Lee,Soon-Yong Kwon,Changwook Jeong","doi":"10.1021/acsnano.5c09640","DOIUrl":null,"url":null,"abstract":"The demand for low contact resistance in two-dimensional (2D) nanoelectronics has positioned semimetals as ideal contact materials, owing to their ability to minimize the formation of metal-induced gap states (MIGS). While the contact physics of Dirac semimetals is well understood, type-II Weyl (i.e., Weyl-II) semimetals remain largely unexplored, despite their unique potential for achieving defect-free nanoscale devices. Here, using density functional theory (DFT), we elucidate the interfacial physics of MoS2-Weyl-II semimetal junctions and conduct a comparative analysis with Dirac semimetals. Crucially, we identify a downward extension of the conduction band minimum (CBM) in MoS2, originating from contact-induced interfacial states. This phenomenon is closely tied to the rectangular Brillouin zone of Weyl-II semimetals, which─unlike the 3-fold symmetry of MoS2 and Dirac semimetals─renders orbital hybridization in MoS2-Weyl-II systems highly sensitive to contact angles. By introducing a modified Schottky-Mott rule that accounts for vacuum level shifts, CBM extensions, and orbital interactions, we significantly improve conventional Schottky barrier height predictions. This approach effectively resolves longstanding theoretical-experimental discrepancies, providing a robust framework to properly design and optimize 2D contacts in next-generation logic devices.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"108 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact Physics in 2D Nanoelectronics: Comparative Study of Type-II Weyl and Dirac Semimetals.\",\"authors\":\"Juwon Han,Hyeonwoo Lee,Youseung Lee,Taehyun Kim,Seokyeon Shin,Youngjoon Lee,Soon-Yong Kwon,Changwook Jeong\",\"doi\":\"10.1021/acsnano.5c09640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for low contact resistance in two-dimensional (2D) nanoelectronics has positioned semimetals as ideal contact materials, owing to their ability to minimize the formation of metal-induced gap states (MIGS). While the contact physics of Dirac semimetals is well understood, type-II Weyl (i.e., Weyl-II) semimetals remain largely unexplored, despite their unique potential for achieving defect-free nanoscale devices. Here, using density functional theory (DFT), we elucidate the interfacial physics of MoS2-Weyl-II semimetal junctions and conduct a comparative analysis with Dirac semimetals. Crucially, we identify a downward extension of the conduction band minimum (CBM) in MoS2, originating from contact-induced interfacial states. This phenomenon is closely tied to the rectangular Brillouin zone of Weyl-II semimetals, which─unlike the 3-fold symmetry of MoS2 and Dirac semimetals─renders orbital hybridization in MoS2-Weyl-II systems highly sensitive to contact angles. By introducing a modified Schottky-Mott rule that accounts for vacuum level shifts, CBM extensions, and orbital interactions, we significantly improve conventional Schottky barrier height predictions. This approach effectively resolves longstanding theoretical-experimental discrepancies, providing a robust framework to properly design and optimize 2D contacts in next-generation logic devices.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c09640\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c09640","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)纳米电子学对低接触电阻的需求使半金属成为理想的接触材料,因为它们能够最大限度地减少金属诱导间隙态(MIGS)的形成。虽然Dirac半金属的接触物理已经被很好地理解,但ii型Weyl(即Weyl- ii)半金属在很大程度上仍未被探索,尽管它们具有实现无缺陷纳米级器件的独特潜力。本文利用密度泛函理论(DFT)阐述了MoS2-Weyl-II半金属结的界面物理性质,并与Dirac半金属结进行了对比分析。至关重要的是,我们确定了MoS2中传导带最小值(CBM)的向下延伸,源于接触诱导的界面状态。这种现象与Weyl-II半金属的矩形布里渊区密切相关,与MoS2和Dirac半金属的三重对称不同,这使得MoS2-Weyl-II体系中的轨道杂化对接触角高度敏感。通过引入一个修正的肖特基-莫特规则来解释真空能级移动、CBM扩展和轨道相互作用,我们显著改进了传统的肖特基势垒高度预测。这种方法有效地解决了长期存在的理论与实验差异,为下一代逻辑器件中适当设计和优化二维触点提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contact Physics in 2D Nanoelectronics: Comparative Study of Type-II Weyl and Dirac Semimetals.
The demand for low contact resistance in two-dimensional (2D) nanoelectronics has positioned semimetals as ideal contact materials, owing to their ability to minimize the formation of metal-induced gap states (MIGS). While the contact physics of Dirac semimetals is well understood, type-II Weyl (i.e., Weyl-II) semimetals remain largely unexplored, despite their unique potential for achieving defect-free nanoscale devices. Here, using density functional theory (DFT), we elucidate the interfacial physics of MoS2-Weyl-II semimetal junctions and conduct a comparative analysis with Dirac semimetals. Crucially, we identify a downward extension of the conduction band minimum (CBM) in MoS2, originating from contact-induced interfacial states. This phenomenon is closely tied to the rectangular Brillouin zone of Weyl-II semimetals, which─unlike the 3-fold symmetry of MoS2 and Dirac semimetals─renders orbital hybridization in MoS2-Weyl-II systems highly sensitive to contact angles. By introducing a modified Schottky-Mott rule that accounts for vacuum level shifts, CBM extensions, and orbital interactions, we significantly improve conventional Schottky barrier height predictions. This approach effectively resolves longstanding theoretical-experimental discrepancies, providing a robust framework to properly design and optimize 2D contacts in next-generation logic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信