Seungjun Lee, Eng Hock Lee, Young-Kyun Kwon, Steven J Koester, Phaedon Avouris, Vladimir Cherkassky, Jerry Tersoff, Tony Low
{"title":"Generalized Energy Band Alignment Model for van der Waals Heterostructures with a Charge Spillage Dipole.","authors":"Seungjun Lee, Eng Hock Lee, Young-Kyun Kwon, Steven J Koester, Phaedon Avouris, Vladimir Cherkassky, Jerry Tersoff, Tony Low","doi":"10.1021/acsnano.5c10603","DOIUrl":null,"url":null,"abstract":"<p><p>The energy band alignment at the interface of van der Waals heterostructures (vdWHs) is a key design parameter for next-generation electronic and optoelectronic devices. Although the Anderson and midgap models have been widely adopted for bulk semiconductor heterostructures, they exhibit severe limitations when applied to vdWHs, particularly for type-III systems. Based on first-principles calculations for approximately 10<sup>3</sup> vdWHs, we demonstrate that these traditional models miss a critical dipole arising from interlayer charge spillage. We introduce a generalized linear response (gLR) model that includes this dipole through a quantum capacitance term while remaining analytically compact. With only two readily computed inputs, the charge neutrality level offset and the sum of the isolated-layer bandgaps, the gLR reproduces density functional theory (DFT) band line-ups with <i>r</i><sup>2</sup> ∼ 0.9 across type-I, -II, and -III stacks. Machine learning feature analysis confirms that these two descriptors dominate the underlying physics, indicating that the model is near-minimal and broadly transferable. The gLR framework therefore provides both mechanistic insight and a fast and accurate surrogate for high-throughput screening of the vast vdW heterostructure design space.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c10603","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The energy band alignment at the interface of van der Waals heterostructures (vdWHs) is a key design parameter for next-generation electronic and optoelectronic devices. Although the Anderson and midgap models have been widely adopted for bulk semiconductor heterostructures, they exhibit severe limitations when applied to vdWHs, particularly for type-III systems. Based on first-principles calculations for approximately 103 vdWHs, we demonstrate that these traditional models miss a critical dipole arising from interlayer charge spillage. We introduce a generalized linear response (gLR) model that includes this dipole through a quantum capacitance term while remaining analytically compact. With only two readily computed inputs, the charge neutrality level offset and the sum of the isolated-layer bandgaps, the gLR reproduces density functional theory (DFT) band line-ups with r2 ∼ 0.9 across type-I, -II, and -III stacks. Machine learning feature analysis confirms that these two descriptors dominate the underlying physics, indicating that the model is near-minimal and broadly transferable. The gLR framework therefore provides both mechanistic insight and a fast and accurate surrogate for high-throughput screening of the vast vdW heterostructure design space.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.