Generalized Energy Band Alignment Model for van der Waals Heterostructures with a Charge Spillage Dipole.

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-22 DOI:10.1021/acsnano.5c10603
Seungjun Lee, Eng Hock Lee, Young-Kyun Kwon, Steven J Koester, Phaedon Avouris, Vladimir Cherkassky, Jerry Tersoff, Tony Low
{"title":"Generalized Energy Band Alignment Model for van der Waals Heterostructures with a Charge Spillage Dipole.","authors":"Seungjun Lee, Eng Hock Lee, Young-Kyun Kwon, Steven J Koester, Phaedon Avouris, Vladimir Cherkassky, Jerry Tersoff, Tony Low","doi":"10.1021/acsnano.5c10603","DOIUrl":null,"url":null,"abstract":"<p><p>The energy band alignment at the interface of van der Waals heterostructures (vdWHs) is a key design parameter for next-generation electronic and optoelectronic devices. Although the Anderson and midgap models have been widely adopted for bulk semiconductor heterostructures, they exhibit severe limitations when applied to vdWHs, particularly for type-III systems. Based on first-principles calculations for approximately 10<sup>3</sup> vdWHs, we demonstrate that these traditional models miss a critical dipole arising from interlayer charge spillage. We introduce a generalized linear response (gLR) model that includes this dipole through a quantum capacitance term while remaining analytically compact. With only two readily computed inputs, the charge neutrality level offset and the sum of the isolated-layer bandgaps, the gLR reproduces density functional theory (DFT) band line-ups with <i>r</i><sup>2</sup> ∼ 0.9 across type-I, -II, and -III stacks. Machine learning feature analysis confirms that these two descriptors dominate the underlying physics, indicating that the model is near-minimal and broadly transferable. The gLR framework therefore provides both mechanistic insight and a fast and accurate surrogate for high-throughput screening of the vast vdW heterostructure design space.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c10603","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The energy band alignment at the interface of van der Waals heterostructures (vdWHs) is a key design parameter for next-generation electronic and optoelectronic devices. Although the Anderson and midgap models have been widely adopted for bulk semiconductor heterostructures, they exhibit severe limitations when applied to vdWHs, particularly for type-III systems. Based on first-principles calculations for approximately 103 vdWHs, we demonstrate that these traditional models miss a critical dipole arising from interlayer charge spillage. We introduce a generalized linear response (gLR) model that includes this dipole through a quantum capacitance term while remaining analytically compact. With only two readily computed inputs, the charge neutrality level offset and the sum of the isolated-layer bandgaps, the gLR reproduces density functional theory (DFT) band line-ups with r2 ∼ 0.9 across type-I, -II, and -III stacks. Machine learning feature analysis confirms that these two descriptors dominate the underlying physics, indicating that the model is near-minimal and broadly transferable. The gLR framework therefore provides both mechanistic insight and a fast and accurate surrogate for high-throughput screening of the vast vdW heterostructure design space.

具有电荷溢出偶极子的范德华异质结构的广义能带对准模型。
范德华异质结构(vdWHs)界面的能带对准是下一代电子和光电子器件的关键设计参数。虽然安德森模型和中隙模型已被广泛应用于体半导体异质结构,但它们在应用于vdWHs时表现出严重的局限性,特别是对于iii型系统。基于大约103 vdWHs的第一性原理计算,我们证明了这些传统模型忽略了由层间电荷溢出引起的临界偶极子。我们引入了一个广义线性响应(gLR)模型,该模型通过量子电容项包括该偶极子,同时保持解析紧凑。只有两个容易计算的输入,电荷中性电平偏移和隔离层带隙的总和,gLR再现密度泛函理论(DFT)带线,r2 ~ 0.9横跨类型- i, -II和-III堆叠。机器学习特征分析证实,这两个描述符主导了底层物理,表明该模型接近最小且可广泛转移。因此,gLR框架为高通量筛选巨大的vdW异质结构设计空间提供了机制洞察和快速准确的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信