Oxygen-Assisted Growth of 2D Vanadium Oxyhalides with Ordered Vanadium Dimerization.

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-21 DOI:10.1021/acsnano.5c10122
Shangtien Yang,Kwok Kwan Tang,Yu Liang,Ziyi Han,Qing Zhang,Xiaoxu Zhao
{"title":"Oxygen-Assisted Growth of 2D Vanadium Oxyhalides with Ordered Vanadium Dimerization.","authors":"Shangtien Yang,Kwok Kwan Tang,Yu Liang,Ziyi Han,Qing Zhang,Xiaoxu Zhao","doi":"10.1021/acsnano.5c10122","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) transition metal halides and oxyhalides offer a versatile platform for investigating emergent quantum phenomena and functionalities. However, achieving structural tunability remains a major challenge. Here, we report an oxygen-assisted chemical vapor deposition (CVD) method for the selective synthesis of vanadium dichloride (VCl2) and vanadium oxychloride (VOCl). By modulating the oxygen partial pressure within a space-confined growth environment, we achieve precise phase control and synthesize large-area ultrathin crystals with high crystallinity and a well-defined stoichiometry. Atomic-resolution electron microscopy imaging reveals that VOCl exhibits long-range periodic vanadium dimerization, resulting in a symmetry-lowering lattice distortion that enables second-harmonic generation (SHG) in an otherwise centrosymmetric structure. Additionally, VOCl demonstrates pronounced in-plane anisotropy, reflecting the directional phonon responses inherent to its lattice symmetry. These findings not only establish a robust synthetic strategy for 2D transition metal halides and oxyhalides but also identify VOCl as a model system for exploring lattice-driven symmetry breaking and nonlinear optical responses in centrosymmetric systems.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"98 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c10122","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) transition metal halides and oxyhalides offer a versatile platform for investigating emergent quantum phenomena and functionalities. However, achieving structural tunability remains a major challenge. Here, we report an oxygen-assisted chemical vapor deposition (CVD) method for the selective synthesis of vanadium dichloride (VCl2) and vanadium oxychloride (VOCl). By modulating the oxygen partial pressure within a space-confined growth environment, we achieve precise phase control and synthesize large-area ultrathin crystals with high crystallinity and a well-defined stoichiometry. Atomic-resolution electron microscopy imaging reveals that VOCl exhibits long-range periodic vanadium dimerization, resulting in a symmetry-lowering lattice distortion that enables second-harmonic generation (SHG) in an otherwise centrosymmetric structure. Additionally, VOCl demonstrates pronounced in-plane anisotropy, reflecting the directional phonon responses inherent to its lattice symmetry. These findings not only establish a robust synthetic strategy for 2D transition metal halides and oxyhalides but also identify VOCl as a model system for exploring lattice-driven symmetry breaking and nonlinear optical responses in centrosymmetric systems.
二维氧化卤化钒有序二聚化的氧辅助生长。
二维(2D)过渡金属卤化物和氧化卤化物为研究新兴量子现象和功能提供了一个通用的平台。然而,实现结构的可调性仍然是主要的挑战。在这里,我们报道了一种氧辅助化学气相沉积(CVD)方法选择性合成二氯化钒(VCl2)和氯化钒(VOCl)。通过在空间限制的生长环境中调节氧分压,我们实现了精确的相控制,并合成了具有高结晶度和明确化学计量的大面积超薄晶体。原子分辨率电子显微镜成像显示,VOCl表现出长时间的周期性钒二聚化,导致对称性降低的晶格畸变,从而在中心对称结构中产生二次谐波(SHG)。此外,VOCl表现出明显的平面内各向异性,反映了其晶格对称性固有的方向性声子响应。这些发现不仅建立了二维过渡金属卤化物和氧化卤化物的强大合成策略,而且还确定了VOCl作为探索中心对称系统中晶格驱动的对称破缺和非线性光学响应的模型系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信