Ajmal Ahmad, Anneliesse Braden, Sazzad Khan, Jianfeng Xiao, Mohammad Moshahid Khan
{"title":"Crosstalk between the DNA damage response and cellular senescence drives aging and age-related diseases.","authors":"Ajmal Ahmad, Anneliesse Braden, Sazzad Khan, Jianfeng Xiao, Mohammad Moshahid Khan","doi":"10.1007/s00281-024-01016-7","DOIUrl":"10.1007/s00281-024-01016-7","url":null,"abstract":"<p><p>Cellular senescence is a crucial process of irreversible cell-cycle arrest, in which cells remain alive, but permanently unable to proliferate in response to distinct types of stressors. Accumulating evidence suggests that DNA damage builds over time and triggers DNA damage response signaling, leading to cellular senescence. Cellular senescence serves as a platform for the perpetuation of inflammatory responses and is central to numerous age-related diseases. Defects in DNA repair genes or senescence can cause premature aging disease. Therapeutic approaches limiting DNA damage or senescence contribute to a rescued phenotype of longevity and neuroprotection, thus suggesting a mechanistic interaction between DNA damage and senescence. Here, we offer a unique perspective on the crosstalk between the DNA damage response pathway and senescence as well as their contribution to age-related diseases. We further summarize recent progress on the mechanisms and therapeutics of senescence, address existing challenges, and offering new insights and future directions in the senescence field.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":"46 3-4","pages":"10"},"PeriodicalIF":7.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Early-life risk factors which govern pro-allergic immunity","authors":"Catherine Ptaschinski, Bernhard F. Gibbs","doi":"10.1007/s00281-024-01020-x","DOIUrl":"https://doi.org/10.1007/s00281-024-01020-x","url":null,"abstract":"<p>Allergic diseases affect up to 40% of the global population with a substantial rise in food allergies, in particular, over the past decades. For the majority of individuals with allergy fundamental programming of a pro-allergic immune system largely occurs in early childhood where it is crucially governed by prenatal genetic and environmental factors, including their interactions. These factors include several genetic aberrations, such as filaggrin loss-of-function mutations, early exposure to respiratory syncytial virus, and various chemicals such as plasticizers, as well as the influence of the gut microbiome and numerous lifestyle circumstances. The effects of such a wide range of factors on allergic responses to an array of potential allergens is complex and the severity of these responses in a clinical setting are subsequently not easy to predict at the present time. However, some parameters which condition a pro-allergic immune response, including severe anaphylaxis, are becoming clearer. This review summarises what we currently know, and don’t know, about the factors which influence developing pro-allergic immunity particularly during the early-life perinatal period.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":"27 1","pages":""},"PeriodicalIF":9.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anaisa V Ferreira, Jorge Domínguez-Andrés, Laura M Merlo Pich, Leo A B Joosten, Mihai G Netea
{"title":"Metabolic Regulation in the Induction of Trained Immunity.","authors":"Anaisa V Ferreira, Jorge Domínguez-Andrés, Laura M Merlo Pich, Leo A B Joosten, Mihai G Netea","doi":"10.1007/s00281-024-01015-8","DOIUrl":"10.1007/s00281-024-01015-8","url":null,"abstract":"<p><p>The innate immune system exhibits features of memory, termed trained immunity, which promote faster and more robust responsiveness to heterologous challenges. Innate immune memory is sustained through epigenetic modifications, affecting gene accessibility, and promoting a tailored gene transcription for an enhanced immune response. Alterations in the epigenetic landscape are intertwined with metabolic rewiring. Here, we review the metabolic pathways that underscore the induction and maintenance of trained immunity, including glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, and amino acid and lipid metabolism. The intricate interplay of these pathways is pivotal for establishing innate immune memory in distinct cellular compartments. We explore in particular the case of resident lung alveolar macrophages. We propose that leveraging the memory of the innate immune system may present therapeutic potential. Specifically, targeting the metabolic programs of innate immune cells is an emerging strategy for clinical interventions, either to boost immune responses in immunosuppressed conditions or to mitigate maladaptive activation in hyperinflammatory diseases.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":"46 3-4","pages":"7"},"PeriodicalIF":7.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Martina Spiga, Elisa Martini, Maria Chiara Maffia, Fabio Ciceri, Eliana Ruggiero, Alessia Potenza, Chiara Bonini
{"title":"Harnessing the tumor microenvironment to boost adoptive T cell therapy with engineered lymphocytes for solid tumors.","authors":"Martina Spiga, Elisa Martini, Maria Chiara Maffia, Fabio Ciceri, Eliana Ruggiero, Alessia Potenza, Chiara Bonini","doi":"10.1007/s00281-024-01011-y","DOIUrl":"10.1007/s00281-024-01011-y","url":null,"abstract":"<p><p>Adoptive cell therapy (ACT) using Chimeric Antigen Receptor (CAR) and T Cell Receptor (TCR) engineered T cells represents an innovative therapeutic approach for the treatment of hematological malignancies, yet its application for solid tumors is still suboptimal. The tumor microenvironment (TME) places several challenges to overcome for a satisfactory therapeutic effect, such as physical barriers (fibrotic capsule and stroma), and inhibitory signals impeding T cell function. Some of these obstacles can be faced by combining ACT with other anti-tumor approaches, such as chemo/radiotherapy and checkpoint inhibitors. On the other hand, cutting edge technological tools offer the opportunity to overcome and, in some cases, take advantage of TME intrinsic characteristics to boost ACT efficacy. These include: the exploitation of chemokine gradients and integrin expression for preferential T-cell homing and extravasation; metabolic changes that have direct or indirect effects on TCR-T and CAR-T cells by increasing antigen presentation and reshaping T cell phenotype; introduction of additional synthetic receptors on TCR-T and CAR-T cells with the aim of increasing T cells survival and fitness.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":"46 3-4","pages":"8"},"PeriodicalIF":7.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141767304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tzu-Han Lo, I-Chun Weng, Hung-Lin Chen, Fu-Tong Liu
{"title":"The role of galectins in the regulation of autophagy and inflammasome in host immunity.","authors":"Tzu-Han Lo, I-Chun Weng, Hung-Lin Chen, Fu-Tong Liu","doi":"10.1007/s00281-024-01018-5","DOIUrl":"10.1007/s00281-024-01018-5","url":null,"abstract":"<p><p>Galectins, a family of glycan-binding proteins have been shown to bind a wide range of glycans. In the cytoplasm, these glycans can be endogenous (or \"self\"), originating from damaged endocytic vesicles, or exogenous (or \"non-self\"), found on the surface of invading microbial pathogens. Galectins can detect these unusual cytosolic exposures to glycans and serve as critical regulators in orchestrating immune responses in innate and adaptive immunity. This review provides an overview of how galectins modulate host cellular responses, such as autophagy, xenophagy, and inflammasome-dependent cell death program, to infection.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":"46 3-4","pages":"6"},"PeriodicalIF":7.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141749005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Riding the storm: managing cytokine-related toxicities in CAR-T cell therapy.","authors":"Andrew D Hughes, David T Teachey, Caroline Diorio","doi":"10.1007/s00281-024-01013-w","DOIUrl":"10.1007/s00281-024-01013-w","url":null,"abstract":"<p><p>The advent of chimeric antigen receptor T cells (CAR-T) has been a paradigm shift in cancer immunotherapeutics, with remarkable outcomes reported for a growing catalog of malignancies. While CAR-T are highly effective in multiple diseases, salvaging patients who were considered incurable, they have unique toxicities which can be life-threatening. Understanding the biology and risk factors for these toxicities has led to targeted treatment approaches which can mitigate them successfully. The three toxicities of particular interest are cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and immune effector cell-associated hemophagocytic lymphohistiocytosis (HLH)-like syndrome (IEC-HS). Each of these is characterized by cytokine storm and hyperinflammation; however, they differ mechanistically with regard to the cytokines and immune cells that drive the pathophysiology. We summarize the current state of the field of CAR-T-associated toxicities, focusing on underlying biology and how this informs toxicity management and prevention. We also highlight several emerging agents showing promise in preclinical models and the clinic. Many of these established and emerging agents do not appear to impact the anti-tumor function of CAR-T, opening the door to additional and wider CAR-T applications.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":"46 3-4","pages":"5"},"PeriodicalIF":7.9,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252192/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L J M Mastenbroek, S M Kooistra, B J L Eggen, J R Prins
{"title":"The role of microglia in early neurodevelopment and the effects of maternal immune activation.","authors":"L J M Mastenbroek, S M Kooistra, B J L Eggen, J R Prins","doi":"10.1007/s00281-024-01017-6","DOIUrl":"10.1007/s00281-024-01017-6","url":null,"abstract":"<p><p>Activation of the maternal immune system during gestation has been associated with an increased risk for neurodevelopmental disorders in the offspring, particularly schizophrenia and autism spectrum disorder. Microglia, the tissue-resident macrophages of the central nervous system, are implicated as potential mediators of this increased risk. Early in development, microglia start populating the embryonic central nervous system and in addition to their traditional role as immune responders under homeostatic conditions, microglia are also intricately involved in various early neurodevelopmental processes. The timing of immune activation may interfere with microglia functioning during early neurodevelopment, potentially leading to long-term consequences in postnatal life. In this review we will discuss the involvement of microglia in brain development during the prenatal and early postnatal stages of life, while also examining the effects of maternal immune activation on microglia and neurodevelopmental processes. Additionally, we discuss recent single cell RNA-sequencing studies focusing on microglia during prenatal development, and hypothesize how early life microglial priming, potentially through epigenetic reprogramming, may be related to neurodevelopmental disorders.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":"46 1-2","pages":"1"},"PeriodicalIF":7.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239780/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Vascular galectins in tumor angiogenesis and cancer immunity.","authors":"Victor L J L Thijssen","doi":"10.1007/s00281-024-01014-9","DOIUrl":"10.1007/s00281-024-01014-9","url":null,"abstract":"<p><p>Sustained tumor angiogenesis, i.e., the induction and maintenance of blood vessel growth by tumor cells, is one of the hallmarks of cancer. The vascularization of malignant tissues not only facilitates tumor growth and metastasis, but also contributes to immune evasion. Important players in all these processes are the endothelial cells which line the luminal side of blood vessel. In the tumor vasculature, these cells are actively involved in angiogenesis as well in the hampered recruitment of immune cells. This is the result of the abnormal tumor microenvironment which triggers both angiostimulatory and immune inhibitory gene expression profiles in endothelial cells. In recent years, it has become evident that galectins constitute a protein family that is expressed in the tumor endothelium. Moreover, several members of this glycan-binding protein family have been found to facilitate tumor angiogenesis and stimulate immune suppression. All this has identified galectins as potential therapeutic targets to simultaneously hamper tumor angiogenesis and alleviate immune suppression. The current review provides a brief introduction in the human galectin protein family. The current knowledge regarding the expression and regulation of galectins in endothelial cells is summarized. Furthermore, an overview of the role that endothelial galectins play in tumor angiogenesis and tumor immunomodulation is provided. Finally, some outstanding questions are discussed that should be addressed by future research efforts. This will help to fully understand the contribution of endothelial galectins to tumor progression and to exploit endothelial galectins for cancer therapy.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":"46 1-2","pages":"3"},"PeriodicalIF":7.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239785/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gut microbiota-derived metabolites tune host homeostasis fate.","authors":"Seungil Kim, Sang-Uk Seo, Mi-Na Kweon","doi":"10.1007/s00281-024-01012-x","DOIUrl":"10.1007/s00281-024-01012-x","url":null,"abstract":"<p><p>The gut microbiota, housing trillions of microorganisms within the gastrointestinal tract, has emerged as a critical regulator of host health and homeostasis. Through complex metabolic interactions, these microorganisms produce a diverse range of metabolites that substantially impact various physiological processes within the host. This review aims to delve into the intricate relationships of gut microbiota-derived metabolites and their influence on the host homeostasis. We will explore how these metabolites affect crucial aspects of host physiology, including metabolism, mucosal integrity, and communication among gut tissues. Moreover, we will spotlight the potential therapeutic applications of targeting these metabolites to restore and sustain host equilibrium. Understanding the intricate interplay between gut microbiota and their metabolites is crucial for developing innovative strategies to promote wellbeing and improve outcomes of chronic diseases.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":"46 1-2","pages":"2"},"PeriodicalIF":7.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239740/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intracellular galectin interactions in health and disease.","authors":"Ralf Jacob, Lena-Sophie Gorek","doi":"10.1007/s00281-024-01010-z","DOIUrl":"10.1007/s00281-024-01010-z","url":null,"abstract":"<p><p>In the galectin family, a group of lectins is united by their evolutionarily conserved carbohydrate recognition domains. These polypeptides play a role in various cellular processes and are implicated in disease mechanisms such as cancer, fibrosis, infection, and inflammation. Following synthesis in the cytosol, manifold interactions of galectins have been described both extracellularly and intracellularly. Extracellular galectins frequently engage with glycoproteins or glycolipids in a carbohydrate-dependent manner. Intracellularly, galectins bind to non-glycosylated proteins situated in distinct cellular compartments, each with multiple cellular functions. This diversity complicates attempts to form a comprehensive understanding of the role of galectin molecules within the cell. This review enumerates intracellular galectin interaction partners and outlines their involvement in cellular processes. The intricate connections between galectin functions and pathomechanisms are illustrated through discussions of intracellular galectin assemblies in immune and cancer cells. This underscores the imperative need to fully comprehend the interplay of galectins with the cellular machinery and to devise therapeutic strategies aimed at counteracting the establishment of galectin-based disease mechanisms.</p>","PeriodicalId":21704,"journal":{"name":"Seminars in Immunopathology","volume":"46 1-2","pages":"4"},"PeriodicalIF":7.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141580758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}