Reviews of Geophysics最新文献

筛选
英文 中文
Expressing Gratitude to Reviewers: A Message From the Editors of Reviews of Geophysics for 2023 向审稿人表示感谢:地球物理学评论》编辑 2023 年致辞
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2024-04-24 DOI: 10.1029/2024RG000844
Qingyun Duan, Valerio Acocella, Ann Marie Carlton, Paolo D’Odorico, Fabio Florindo, Andrew Gettelman, Jasper Halakas, Ruth Harris, Gesine Mollenhauer, Alan Robock, Claudine Stirling, Yusuke Yokoyama
{"title":"Expressing Gratitude to Reviewers: A Message From the Editors of Reviews of Geophysics for 2023","authors":"Qingyun Duan,&nbsp;Valerio Acocella,&nbsp;Ann Marie Carlton,&nbsp;Paolo D’Odorico,&nbsp;Fabio Florindo,&nbsp;Andrew Gettelman,&nbsp;Jasper Halakas,&nbsp;Ruth Harris,&nbsp;Gesine Mollenhauer,&nbsp;Alan Robock,&nbsp;Claudine Stirling,&nbsp;Yusuke Yokoyama","doi":"10.1029/2024RG000844","DOIUrl":"https://doi.org/10.1029/2024RG000844","url":null,"abstract":"<p>On behalf of the authors and readers of Reviews of Geophysics (RoG), the American Geophysical Union, and the broader scientific community, the editors wish to wholeheartedly thank those who reviewed manuscripts for RoG in 2023.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":null,"pages":null},"PeriodicalIF":25.2,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024RG000844","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140639547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Land Data Assimilation: Harmonizing Theory and Data in Land Surface Process Studies 陆地数据同化:陆地表面过程研究中的理论与数据协调
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2024-03-19 DOI: 10.1029/2022RG000801
Xin Li, Feng Liu, Chunfeng Ma, Jinliang Hou, Donghai Zheng, Hanqing Ma, Yulong Bai, Xujun Han, Harry Vereecken, Kun Yang, Qingyun Duan, Chunlin Huang
{"title":"Land Data Assimilation: Harmonizing Theory and Data in Land Surface Process Studies","authors":"Xin Li,&nbsp;Feng Liu,&nbsp;Chunfeng Ma,&nbsp;Jinliang Hou,&nbsp;Donghai Zheng,&nbsp;Hanqing Ma,&nbsp;Yulong Bai,&nbsp;Xujun Han,&nbsp;Harry Vereecken,&nbsp;Kun Yang,&nbsp;Qingyun Duan,&nbsp;Chunlin Huang","doi":"10.1029/2022RG000801","DOIUrl":"https://doi.org/10.1029/2022RG000801","url":null,"abstract":"<p>Data assimilation plays a dual role in advancing the “scientific” understanding and serving as an “engineering tool” for the Earth system sciences. Land data assimilation (LDA) has evolved into a distinct discipline within geophysics, facilitating the harmonization of theory and data and allowing land models and observations to complement and constrain each other. Over recent decades, substantial progress has been made in the theory, methodology, and application of LDA, necessitating a holistic and in-depth exploration of its full spectrum. Here, we present a thorough review elucidating the theoretical and methodological developments in LDA and its distinctive features. This encompasses breakthroughs in addressing strong nonlinearities in land surface processes, exploring the potential of machine learning approaches in data assimilation, quantifying uncertainties arising from multiscale spatial correlation, and simultaneously estimating model states and parameters. LDA has proven successful in enhancing the understanding and prediction of various land surface processes (including soil moisture, snow, evapotranspiration, streamflow, groundwater, irrigation and land surface temperature), particularly within the realms of water and energy cycles. This review outlines the development of global, regional, and catchment-scale LDA systems and software platforms, proposing grand challenges of generating land reanalysis and advancing coupled land‒atmosphere DA. We lastly highlight the opportunities to expand the applications of LDA from pure geophysical systems to coupled natural and human systems by ingesting a deluge of Earth observation and social sensing data. The paper synthesizes current LDA knowledge and provides a steppingstone for its future development, particularly in promoting dual driven theory-data land processes studies.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":null,"pages":null},"PeriodicalIF":25.2,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000801","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140161345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lake Water Temperature Modeling in an Era of Climate Change: Data Sources, Models, and Future Prospects 气候变化时代的湖水温度建模:数据来源、模型和未来展望
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2024-02-11 DOI: 10.1029/2023RG000816
S. Piccolroaz, S. Zhu, R. Ladwig, L. Carrea, S. Oliver, A. P. Piotrowski, M. Ptak, R. Shinohara, M. Sojka, R. I. Woolway, D. Z. Zhu
{"title":"Lake Water Temperature Modeling in an Era of Climate Change: Data Sources, Models, and Future Prospects","authors":"S. Piccolroaz,&nbsp;S. Zhu,&nbsp;R. Ladwig,&nbsp;L. Carrea,&nbsp;S. Oliver,&nbsp;A. P. Piotrowski,&nbsp;M. Ptak,&nbsp;R. Shinohara,&nbsp;M. Sojka,&nbsp;R. I. Woolway,&nbsp;D. Z. Zhu","doi":"10.1029/2023RG000816","DOIUrl":"https://doi.org/10.1029/2023RG000816","url":null,"abstract":"<p>Lake thermal dynamics have been considerably impacted by climate change, with potential adverse effects on aquatic ecosystems. To better understand the potential impacts of future climate change on lake thermal dynamics and related processes, the use of mathematical models is essential. In this study, we provide a comprehensive review of lake water temperature modeling. We begin by discussing the physical concepts that regulate thermal dynamics in lakes, which serve as a primer for the description of process-based models. We then provide an overview of different sources of observational water temperature data, including in situ monitoring and satellite Earth observations, used in the field of lake water temperature modeling. We classify and review the various lake water temperature models available, and then discuss model performance, including commonly used performance metrics and optimization methods. Finally, we analyze emerging modeling approaches, including forecasting, digital twins, combining process-based modeling with deep learning, evaluating structural model differences through ensemble modeling, adapted water management, and coupling of climate and lake models. This review is aimed at a diverse group of professionals working in the fields of limnology and hydrology, including ecologists, biologists, physicists, engineers, and remote sensing researchers from the private and public sectors who are interested in understanding lake water temperature modeling and its potential applications.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":null,"pages":null},"PeriodicalIF":25.2,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000816","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139719928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
River Damming Impacts on Fish Habitat and Associated Conservation Measures 河流大坝对鱼类栖息地的影响及相关保护措施
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2023-12-19 DOI: 10.1029/2023RG000819
Qiuwen Chen, Qinyuan Li, Yuqing Lin, Jianyun Zhang, Jun Xia, Jinren Ni, Steven J. Cooke, Jim Best, Shufeng He, Tao Feng, Yuchen Chen, Daniele Tonina, Rohan Benjankar, Sebastian Birk, Ayan Santos Fleischmann, Hanlu Yan, Lei Tang
{"title":"River Damming Impacts on Fish Habitat and Associated Conservation Measures","authors":"Qiuwen Chen,&nbsp;Qinyuan Li,&nbsp;Yuqing Lin,&nbsp;Jianyun Zhang,&nbsp;Jun Xia,&nbsp;Jinren Ni,&nbsp;Steven J. Cooke,&nbsp;Jim Best,&nbsp;Shufeng He,&nbsp;Tao Feng,&nbsp;Yuchen Chen,&nbsp;Daniele Tonina,&nbsp;Rohan Benjankar,&nbsp;Sebastian Birk,&nbsp;Ayan Santos Fleischmann,&nbsp;Hanlu Yan,&nbsp;Lei Tang","doi":"10.1029/2023RG000819","DOIUrl":"https://doi.org/10.1029/2023RG000819","url":null,"abstract":"<p>River damming has brought great benefits to flood mitigation, energy and food production, and will continue to play a significant role in global energy supply, particularly in Asia, Africa, and South America. However, dams have extensively altered global river dynamics, including riverine connectivity, hydrological, thermal, sediment and solute regimes, and the channel morphology. These alterations have detrimental effects on the quality and quantity of fish habitat and associated impacts on aquatic life. Indeed, dams have been implicated in the decline of numerous fishes, emphasizing the need for effective conservation measures. Here, we present a global synthesis of critical issues concerning the impacts of river damming on physical fish habitats, with a particular focus on key fish species across continents. We also consider current fish conservation measures and their applicability in different contexts. Finally, we identify future research needs. The information presented herein will help support sustainable dam operation under the constraints of future climate change and human needs.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":null,"pages":null},"PeriodicalIF":25.2,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000819","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138739870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frontiers in Satellite-Based Estimates of Cloud-Mediated Aerosol Forcing 基于云介导的气溶胶强迫卫星估计的前沿
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2023-10-18 DOI: 10.1029/2022RG000799
Daniel Rosenfeld, Alexander Kokhanovsky, Tom Goren, Edward Gryspeerdt, Otto Hasekamp, Hailing Jia, Anton Lopatin, Johannes Quaas, Zengxin Pan, Odran Sourdeval
{"title":"Frontiers in Satellite-Based Estimates of Cloud-Mediated Aerosol Forcing","authors":"Daniel Rosenfeld,&nbsp;Alexander Kokhanovsky,&nbsp;Tom Goren,&nbsp;Edward Gryspeerdt,&nbsp;Otto Hasekamp,&nbsp;Hailing Jia,&nbsp;Anton Lopatin,&nbsp;Johannes Quaas,&nbsp;Zengxin Pan,&nbsp;Odran Sourdeval","doi":"10.1029/2022RG000799","DOIUrl":"10.1029/2022RG000799","url":null,"abstract":"<p>Atmospheric aerosols affect the Earth's climate in many ways, including acting as the seeds on which cloud droplets form. Since a large fraction of these particles is anthropogenic, the clouds' microphysical and radiative characteristics are influenced by human activity on a global scale leading to important climatic effects. The respective change in the energy budget at the top of the atmosphere is defined as the effective radiative forcing due to aerosol-cloud interaction (ERF<sub>aci</sub>). It is estimated that the ERF<sub>aci</sub> offsets presently nearly 1/4 of the greenhouse-induced warming, but the uncertainty is within a factor of two. A common method to calculate the ERF<sub>aci</sub> is by the multiplication of the susceptibility of the cloud radiative effect to changes in aerosols by the anthropogenic change of the aerosol concentration. This has to be done by integrating it over all cloud regimes. Here we review the various methods of the ERF<sub>aci</sub> estimation. Global measurements require satellites' global coverage. The challenge of quantifying aerosol amounts in cloudy atmospheres are met with the rapid development of novel methodologies reviewed here. The aerosol characteristics can be retrieved from space based on their optical properties, including polarization. The concentrations of the aerosols that serve as cloud drop condensation nuclei can be also estimated from their impact on the satellite-retrieved cloud drop number concentrations. These observations are critical for reducing the uncertainty in the ERF<sub>aci</sub> calculated from global climate models (GCMs), but further development is required to allow GCMs to properly simulate and benefit these novel observables.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":null,"pages":null},"PeriodicalIF":25.2,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135884108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Historical Development of Large-Scale Paleoclimate Field Reconstructions Over the Common Era 大尺度古气候场重建的历史进展
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2023-09-20 DOI: 10.1029/2022RG000782
Jason E. Smerdon, Edward R. Cook, Nathan J. Steiger
{"title":"The Historical Development of Large-Scale Paleoclimate Field Reconstructions Over the Common Era","authors":"Jason E. Smerdon,&nbsp;Edward R. Cook,&nbsp;Nathan J. Steiger","doi":"10.1029/2022RG000782","DOIUrl":"10.1029/2022RG000782","url":null,"abstract":"<p>Climate field reconstructions (CFRs) combine modern observational data with paleoclimatic proxies to estimate climate variables over spatiotemporal grids during time periods when widespread observations of climatic conditions do not exist. The Common Era (CE) has been a period over which many seasonally- and annually-resolved CFRs have been produced on regional to global scales. CFRs over the CE were first produced in the 1970s using dendroclimatic records and linear regression-based approaches. Since that time, many new CFRs have been produced using a wide range of proxy data sets and reconstruction techniques. We assess the early history of research on CFRs for the CE, which provides context for our review of advances in CFR research over the last two decades. We review efforts to derive gridded hydroclimatic CFRs over continental regions using networks of tree-ring proxies. We subsequently explore work to produce hemispheric- and global-scale CFRs of surface temperature using multi-proxy data sets, before specifically reviewing recently-developed data assimilation techniques and how they have been used to produce simultaneous reconstructions of multiple climatic fields globally. We then review efforts to develop standardized and digitized databases of proxy networks for use in CFR research, before concluding with some thoughts on important next steps for CFR development.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":null,"pages":null},"PeriodicalIF":25.2,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000782","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135648622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geomorphic Process Chains in High-Mountain Regions—A Review and Classification Approach for Natural Hazards Assessment 高山区地貌过程链——自然灾害评价与分类方法综述
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2023-09-13 DOI: 10.1029/2022RG000791
Peter Mani, Simon Allen, Stephen G. Evans, Jeffrey S. Kargel, Martin Mergili, Dmitry Petrakov, Markus Stoffel
{"title":"Geomorphic Process Chains in High-Mountain Regions—A Review and Classification Approach for Natural Hazards Assessment","authors":"Peter Mani,&nbsp;Simon Allen,&nbsp;Stephen G. Evans,&nbsp;Jeffrey S. Kargel,&nbsp;Martin Mergili,&nbsp;Dmitry Petrakov,&nbsp;Markus Stoffel","doi":"10.1029/2022RG000791","DOIUrl":"10.1029/2022RG000791","url":null,"abstract":"<p>Populations and infrastructure in high mountain regions are exposed to a wide range of natural hazards, the frequency, magnitude, and location of which are extremely sensitive to climate change. In cases where several hazards can occur simultaneously or where the occurrence of one event will change the disposition of another, assessments need to account for complex process chains. While process chains are widely recognized as a major threat, no systematic analysis has hitherto been undertaken. We therefore establish new understanding on the factors that directly trigger or alter the disposition for subsequent events in the chain and derive a novel classification scheme and parameters to aid natural hazard assessment. Process chains in high mountains are commonly associated with glacier retreat or permafrost degradation. Regional differences exist in the nature and rate of sequencing—some process chains are almost instantaneous, while other linkages are delayed. Process chains involving rapid sequences are difficult to predict, and impacts are often devastating. We demonstrate that process chains are triggered most frequently by progressive failures, being the result of gradual landscape weakening and not due to the occurrence of a distinct process. If fluvial processes are part of the process chain the reach (or mobility) of process chains is increased. Increased mobility can also occur if sediment deposition areas along river channels are activated. As climate changes causes glacial environments to transform into sediment-rich paraglacial and fluvial landscapes, it is expected that the mobility of process chains will increase in the future.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":null,"pages":null},"PeriodicalIF":25.2,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000791","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136272246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Antarctic Sedimentary Basins and Their Influence on Ice-Sheet Dynamics 南极沉积盆地及其对冰盖动力学的影响
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2023-08-23 DOI: 10.1029/2021RG000767
A. R. A. Aitken, L. Li, B. Kulessa, D. Schroeder, T. A. Jordan, J. M. Whittaker, S. Anandakrishnan, E. J. Dawson, D. A. Wiens, O. Eisen, M. J. Siegert
{"title":"Antarctic Sedimentary Basins and Their Influence on Ice-Sheet Dynamics","authors":"A. R. A. Aitken,&nbsp;L. Li,&nbsp;B. Kulessa,&nbsp;D. Schroeder,&nbsp;T. A. Jordan,&nbsp;J. M. Whittaker,&nbsp;S. Anandakrishnan,&nbsp;E. J. Dawson,&nbsp;D. A. Wiens,&nbsp;O. Eisen,&nbsp;M. J. Siegert","doi":"10.1029/2021RG000767","DOIUrl":"10.1029/2021RG000767","url":null,"abstract":"<p>Knowledge of Antarctica's sedimentary basins builds our understanding of the coupled evolution of tectonics, ice, ocean, and climate. Sedimentary basins have properties distinct from basement-dominated regions that impact ice-sheet dynamics, potentially influencing future ice-sheet change. Despite their importance, our knowledge of Antarctic sedimentary basins is restricted. Remoteness, the harsh environment, the overlying ice sheet, ice shelves, and sea ice all make fieldwork challenging. Nonetheless, in the past decade the geophysics community has made great progress in internationally coordinated data collection and compilation with parallel advances in data processing and analysis supporting a new insight into Antarctica's subglacial environment. Here, we summarize recent progress in understanding Antarctica's sedimentary basins. We review advances in the technical capability of radar, potential fields, seismic, and electromagnetic techniques to detect and characterize basins beneath ice and advances in integrated multi-data interpretation including machine-learning approaches. These new capabilities permit a continent-wide mapping of Antarctica's sedimentary basins and their characteristics, aiding definition of the tectonic development of the continent. Crucially, Antarctica's sedimentary basins interact with the overlying ice sheet through dynamic feedbacks that have the potential to contribute to rapid ice-sheet change. Looking ahead, future research directions include techniques to increase data coverage within logistical constraints, and resolving major knowledge gaps, including insufficient sampling of the ice-sheet bed and poor definition of subglacial basin structure and stratigraphy. Translating the knowledge of sedimentary basin processes into ice-sheet modeling studies is critical to underpin better capacity to predict future change.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":null,"pages":null},"PeriodicalIF":25.2,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000767","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80517164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Global Climate Impacts of Land-Surface and Atmospheric Processes Over the Tibetan Plateau 青藏高原陆面和大气过程对全球气候的影响
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2023-08-09 DOI: 10.1029/2022RG000771
Jianping Huang, Xiuji Zhou, Guoxiong Wu, Xiangde Xu, Qingyun Zhao, Yimin Liu, Anmin Duan, Yongkun Xie, Yaoming Ma, Ping Zhao, Song Yang, Kun Yang, Haijun Yang, Jianchun Bian, Yunfei Fu, Jinming Ge, Yuzhi Liu, Qigang Wu, Haipeng Yu, Binbin Wang, Qing Bao, Kai Qie
{"title":"Global Climate Impacts of Land-Surface and Atmospheric Processes Over the Tibetan Plateau","authors":"Jianping Huang,&nbsp;Xiuji Zhou,&nbsp;Guoxiong Wu,&nbsp;Xiangde Xu,&nbsp;Qingyun Zhao,&nbsp;Yimin Liu,&nbsp;Anmin Duan,&nbsp;Yongkun Xie,&nbsp;Yaoming Ma,&nbsp;Ping Zhao,&nbsp;Song Yang,&nbsp;Kun Yang,&nbsp;Haijun Yang,&nbsp;Jianchun Bian,&nbsp;Yunfei Fu,&nbsp;Jinming Ge,&nbsp;Yuzhi Liu,&nbsp;Qigang Wu,&nbsp;Haipeng Yu,&nbsp;Binbin Wang,&nbsp;Qing Bao,&nbsp;Kai Qie","doi":"10.1029/2022RG000771","DOIUrl":"10.1029/2022RG000771","url":null,"abstract":"<p>The Tibetan Plateau (TP) impacts local and remote atmospheric circulations, wherein it mechanically and thermally affects air masses or airflows. Moreover, the TP provides a key channel for substance transport between the troposphere and the stratosphere. This study reviews recent advances in research regarding land–atmosphere coupling processes over the TP. The TP experiences climate warming and wetting. Climate warming has caused glacier retreat, permafrost degradation, and a general increase in vegetation density, while climate wetting has led to a significant increase in the number of major lakes, primarily through increased precipitation. Local and regional climates are affected by interactions between the land and the atmosphere. Namely, the TP drives surface pollutants to the upper troposphere in an Asian summer monsoon (ASM) anticyclone circulation, before spreading to the lower stratosphere. Further, the thermal forcing of the TP plays an essential role in the ASM. TP forcing can modulate hemispheric-scale atmospheric circulations across all seasons. The TP interacts with remote oceans through a forced atmospheric response and is substantially affected by the evolution of the Earth's climate via promoting Atlantic meridional overturning circulation and eliminating Pacific meridional overturning circulation. The extensive influence of the TP is facilitated by its coupling with the ASM in the summer; whereas its winter influence on climate mainly occurs through Rossby waves. The observed increasing trends of temperature and precipitation over the TP are projected to continue throughout the 21st century.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":null,"pages":null},"PeriodicalIF":25.2,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82218601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Antarctic Landfast Sea Ice: A Review of Its Physics, Biogeochemistry and Ecology 南极陆地海冰:物理、生物地球化学和生态学研究进展
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2023-06-23 DOI: 10.1029/2022RG000770
A. D. Fraser, P. Wongpan, P. J. Langhorne, A. R. Klekociuk, K. Kusahara, D. Lannuzel, R. A. Massom, K. M. Meiners, K. M. Swadling, D. P. Atwater, G. M. Brett, M. Corkill, L. A. Dalman, S. Fiddes, A. Granata, L. Guglielmo, P. Heil, G. H. Leonard, A. R. Mahoney, A. McMinn, P. van der Merwe, C. K. Weldrick, B. Wienecke
{"title":"Antarctic Landfast Sea Ice: A Review of Its Physics, Biogeochemistry and Ecology","authors":"A. D. Fraser,&nbsp;P. Wongpan,&nbsp;P. J. Langhorne,&nbsp;A. R. Klekociuk,&nbsp;K. Kusahara,&nbsp;D. Lannuzel,&nbsp;R. A. Massom,&nbsp;K. M. Meiners,&nbsp;K. M. Swadling,&nbsp;D. P. Atwater,&nbsp;G. M. Brett,&nbsp;M. Corkill,&nbsp;L. A. Dalman,&nbsp;S. Fiddes,&nbsp;A. Granata,&nbsp;L. Guglielmo,&nbsp;P. Heil,&nbsp;G. H. Leonard,&nbsp;A. R. Mahoney,&nbsp;A. McMinn,&nbsp;P. van der Merwe,&nbsp;C. K. Weldrick,&nbsp;B. Wienecke","doi":"10.1029/2022RG000770","DOIUrl":"https://doi.org/10.1029/2022RG000770","url":null,"abstract":"<p>Antarctic landfast sea ice (fast ice) is stationary sea ice that is attached to the coast, grounded icebergs, ice shelves, or other protrusions on the continental shelf. Fast ice forms in narrow (generally up to 200 km wide) bands, and ranges in thickness from centimeters to tens of meters. In most regions, it forms in autumn, persists through the winter and melts in spring/summer, but can remain throughout the summer in particular locations, becoming multi-year ice. Despite its relatively limited extent (comprising between about 4% and 13% of overall sea ice), its presence, variability and seasonality are drivers of a wide range of physical, biological and biogeochemical processes, with both local and far-ranging ramifications for the Earth system. Antarctic fast ice has, until quite recently, been overlooked in studies, likely due to insufficient knowledge of its distribution, leading to its reputation as a “missing piece of the Antarctic puzzle.” This review presents a synthesis of current knowledge of the physical, biogeochemical and biological aspects of fast ice, based on the sub-domains of: fast ice growth, properties and seasonality; remote-sensing and distribution; interactions with the atmosphere and the ocean; biogeochemical interactions; its role in primary production; and fast ice as a habitat for grazers. Finally, we consider the potential state of Antarctic fast ice at the end of the 21st Century, underpinned by Coupled Model Intercomparison Project model projections. This review also gives recommendations for targeted future work to increase our understanding of this critically-important element of the global cryosphere.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":null,"pages":null},"PeriodicalIF":25.2,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022RG000770","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6004872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信