气候和水文地质对永久冻土区水迹的控制

IF 25.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Joanmarie Del Vecchio, Sarah G. Evans
{"title":"气候和水文地质对永久冻土区水迹的控制","authors":"Joanmarie Del Vecchio,&nbsp;Sarah G. Evans","doi":"10.1029/2024RG000854","DOIUrl":null,"url":null,"abstract":"<p>Climate change drives disturbance in hydrology and geomorphology in terrestrial polar landscapes underlain by permafrost, yet measurements of, and theories to understand, these changes are limited. Water flowing from permafrost hillslopes to channels is often modulated by water tracks, zones of enhanced soil moisture in unchannelized depressions that concentrate water flow downslope. Water tracks, which dominate hillslope hydrology in some permafrost landscapes, lack a consistent definition and identification method, and their global occurrence, morphology, climate relationships, and geomorphic roles remain understudied despite their role in the permafrost carbon cycle. Combining a literature review with a synthesis of prior work, we identify uniting and distinguishing characteristics between water tracks from disparate polar sites with a toolkit for future field and remotely sensed identification of water tracks. We place previous studies within a quantitative framework of “top-down” climate and “bottom-up” geology controls on track morphology and hydrogeomorphic function. We find the term “water track” is applied to a broad category of concentrated suprapermafrost flowpaths exhibiting varying morphology, degrees of self-organization, hydraulic characteristics, subsurface composition, vegetation, relationships to thaw tables, and stream order/hillslope position. We propose that the widespread occurrence of water tracks on both poles across varying geologic, ecologic, and climatic factors implies that water tracks are in dynamic equilibrium with the permafrost environment but that they may experience change as the climate continues to warm. Current knowledge gaps include these features' trajectories in the face of ongoing climate change and their role as an analog landform for an active Martian hydrosphere.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024RG000854","citationCount":"0","resultStr":"{\"title\":\"Climate and Hydrogeological Controls on Water Tracks in Permafrost Landscapes\",\"authors\":\"Joanmarie Del Vecchio,&nbsp;Sarah G. Evans\",\"doi\":\"10.1029/2024RG000854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change drives disturbance in hydrology and geomorphology in terrestrial polar landscapes underlain by permafrost, yet measurements of, and theories to understand, these changes are limited. Water flowing from permafrost hillslopes to channels is often modulated by water tracks, zones of enhanced soil moisture in unchannelized depressions that concentrate water flow downslope. Water tracks, which dominate hillslope hydrology in some permafrost landscapes, lack a consistent definition and identification method, and their global occurrence, morphology, climate relationships, and geomorphic roles remain understudied despite their role in the permafrost carbon cycle. Combining a literature review with a synthesis of prior work, we identify uniting and distinguishing characteristics between water tracks from disparate polar sites with a toolkit for future field and remotely sensed identification of water tracks. We place previous studies within a quantitative framework of “top-down” climate and “bottom-up” geology controls on track morphology and hydrogeomorphic function. We find the term “water track” is applied to a broad category of concentrated suprapermafrost flowpaths exhibiting varying morphology, degrees of self-organization, hydraulic characteristics, subsurface composition, vegetation, relationships to thaw tables, and stream order/hillslope position. We propose that the widespread occurrence of water tracks on both poles across varying geologic, ecologic, and climatic factors implies that water tracks are in dynamic equilibrium with the permafrost environment but that they may experience change as the climate continues to warm. Current knowledge gaps include these features' trajectories in the face of ongoing climate change and their role as an analog landform for an active Martian hydrosphere.</p>\",\"PeriodicalId\":21177,\"journal\":{\"name\":\"Reviews of Geophysics\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024RG000854\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024RG000854\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024RG000854","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

气候变化导致冻土下陆地极地景观的水文和地貌扰动,但对这些变化的测量和理论理解都是有限的。从永久冻土带山坡流向河道的水经常受到水轨的调节,水轨是在未渠化的洼地中土壤湿度增强的区域,它将水流集中到下坡。在一些永久冻土景观中,水轨迹在山坡水文中占主导地位,但缺乏一致的定义和识别方法,尽管它们在永久冻土碳循环中起着重要作用,但它们的全球分布、形态、气候关系和地貌作用仍未得到充分研究。结合文献综述和先前工作的综合,我们确定了来自不同极地站点的水迹之间的统一和区分特征,并为未来的实地和遥感水迹识别提供了工具包。我们将以前的研究置于“自上而下”的气候和“自下而上”的地质控制轨道形态和水文地貌功能的定量框架内。我们发现,“水迹”一词适用于广泛的集中的上层冻土流道,这些流道表现出不同的形态、自组织程度、水力特征、地下成分、植被、与融雪表的关系以及溪流顺序/山坡位置。我们认为,在不同的地质、生态和气候因素下,水迹在两极广泛存在,这意味着水迹与永久冻土环境处于动态平衡状态,但随着气候持续变暖,它们可能会发生变化。目前的知识缺口包括这些特征在面对持续的气候变化时的轨迹,以及它们作为活跃的火星水圈的模拟地形的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Climate and Hydrogeological Controls on Water Tracks in Permafrost Landscapes

Climate and Hydrogeological Controls on Water Tracks in Permafrost Landscapes

Climate change drives disturbance in hydrology and geomorphology in terrestrial polar landscapes underlain by permafrost, yet measurements of, and theories to understand, these changes are limited. Water flowing from permafrost hillslopes to channels is often modulated by water tracks, zones of enhanced soil moisture in unchannelized depressions that concentrate water flow downslope. Water tracks, which dominate hillslope hydrology in some permafrost landscapes, lack a consistent definition and identification method, and their global occurrence, morphology, climate relationships, and geomorphic roles remain understudied despite their role in the permafrost carbon cycle. Combining a literature review with a synthesis of prior work, we identify uniting and distinguishing characteristics between water tracks from disparate polar sites with a toolkit for future field and remotely sensed identification of water tracks. We place previous studies within a quantitative framework of “top-down” climate and “bottom-up” geology controls on track morphology and hydrogeomorphic function. We find the term “water track” is applied to a broad category of concentrated suprapermafrost flowpaths exhibiting varying morphology, degrees of self-organization, hydraulic characteristics, subsurface composition, vegetation, relationships to thaw tables, and stream order/hillslope position. We propose that the widespread occurrence of water tracks on both poles across varying geologic, ecologic, and climatic factors implies that water tracks are in dynamic equilibrium with the permafrost environment but that they may experience change as the climate continues to warm. Current knowledge gaps include these features' trajectories in the face of ongoing climate change and their role as an analog landform for an active Martian hydrosphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews of Geophysics
Reviews of Geophysics 地学-地球化学与地球物理
CiteScore
50.30
自引率
0.80%
发文量
28
审稿时长
12 months
期刊介绍: Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信