Reviews of Geophysics最新文献

筛选
英文 中文
The El Niño Southern Oscillation (ENSO) Recharge Oscillator Conceptual Model: Achievements and Future Prospects
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2025-03-20 DOI: 10.1029/2024RG000843
J. Vialard, F.-F. Jin, M. J. McPhaden, A. Fedorov, W. Cai, S.-I. An, D. Dommenget, X. Fang, M. F. Stuecker, C. Wang, A. Wittenberg, S. Zhao, F. Liu, S.-K. Kim, Y. Planton, T. Geng, M. Lengaigne, A. Capotondi, N. Chen, L. Geng, S. Hu, T. Izumo, J.-S. Kug, J.-J. Luo, S. McGregor, B. Pagli, P. Priya, S. Stevenson, S. Thual
{"title":"The El Niño Southern Oscillation (ENSO) Recharge Oscillator Conceptual Model: Achievements and Future Prospects","authors":"J. Vialard,&nbsp;F.-F. Jin,&nbsp;M. J. McPhaden,&nbsp;A. Fedorov,&nbsp;W. Cai,&nbsp;S.-I. An,&nbsp;D. Dommenget,&nbsp;X. Fang,&nbsp;M. F. Stuecker,&nbsp;C. Wang,&nbsp;A. Wittenberg,&nbsp;S. Zhao,&nbsp;F. Liu,&nbsp;S.-K. Kim,&nbsp;Y. Planton,&nbsp;T. Geng,&nbsp;M. Lengaigne,&nbsp;A. Capotondi,&nbsp;N. Chen,&nbsp;L. Geng,&nbsp;S. Hu,&nbsp;T. Izumo,&nbsp;J.-S. Kug,&nbsp;J.-J. Luo,&nbsp;S. McGregor,&nbsp;B. Pagli,&nbsp;P. Priya,&nbsp;S. Stevenson,&nbsp;S. Thual","doi":"10.1029/2024RG000843","DOIUrl":"10.1029/2024RG000843","url":null,"abstract":"<p>The recharge oscillator (RO) is a simple mathematical model of the El Niño Southern Oscillation (ENSO). In its original form, it is based on two ordinary differential equations that describe the evolution of equatorial Pacific sea surface temperature and oceanic heat content. These equations make use of physical principles that operate in nature: (a) the air-sea interaction loop known as the Bjerknes feedback, (b) a delayed oceanic feedback arising from the slow oceanic response to winds within the equatorial band, (c) state-dependent stochastic forcing from fast wind variations known as westerly wind bursts (WWBs), and (d) nonlinearities such as those related to deep atmospheric convection and oceanic advection. These elements can be combined at different levels of RO complexity. The RO reproduces ENSO key properties in observations and climate models: its amplitude, dominant timescale, seasonality, and warm/cold phases amplitude asymmetry. We discuss the RO in the context of timely research questions. First, the RO can be extended to account for ENSO pattern diversity (with events that either peak in the central or eastern Pacific). Second, the core RO hypothesis that ENSO is governed by tropical Pacific dynamics is discussed from the perspective of influences from other basins. Finally, we discuss the RO relevance for studying ENSO response to climate change, and underline that accounting for ENSO diversity, nonlinearities, and better links of RO parameters to the long term mean state are important research avenues. We end by proposing important RO-based research problems.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024RG000843","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expressing Gratitude to Reviewers: A Message From the Editors of Reviews of Geophysics for 2024
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2025-03-05 DOI: 10.1029/2025RG000886
Qingyun Duan, Valerio Acocella, Ann Marie Carlton, Minhan Dai, Paolo D’Odorico, Josh Feinberg, Fabio Florindo, Natalia Ganjushkina, Andrew Gettelman, Ruth Harris, Gesine Mollenhauer, Alan Robock, Claudine Stirling, Yusuke Yokoyama
{"title":"Expressing Gratitude to Reviewers: A Message From the Editors of Reviews of Geophysics for 2024","authors":"Qingyun Duan,&nbsp;Valerio Acocella,&nbsp;Ann Marie Carlton,&nbsp;Minhan Dai,&nbsp;Paolo D’Odorico,&nbsp;Josh Feinberg,&nbsp;Fabio Florindo,&nbsp;Natalia Ganjushkina,&nbsp;Andrew Gettelman,&nbsp;Ruth Harris,&nbsp;Gesine Mollenhauer,&nbsp;Alan Robock,&nbsp;Claudine Stirling,&nbsp;Yusuke Yokoyama","doi":"10.1029/2025RG000886","DOIUrl":"https://doi.org/10.1029/2025RG000886","url":null,"abstract":"<p>On behalf of the authors and readers of Reviews of Geophysics (RoG), the American Geophysical Union, and the broader scientific community, the editors wish to wholeheartedly thank those who reviewed manuscripts for RoG in 2024.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025RG000886","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143554458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate and Hydrogeological Controls on Water Tracks in Permafrost Landscapes
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2025-02-26 DOI: 10.1029/2024RG000854
Joanmarie Del Vecchio, Sarah G. Evans
{"title":"Climate and Hydrogeological Controls on Water Tracks in Permafrost Landscapes","authors":"Joanmarie Del Vecchio,&nbsp;Sarah G. Evans","doi":"10.1029/2024RG000854","DOIUrl":"https://doi.org/10.1029/2024RG000854","url":null,"abstract":"<p>Climate change drives disturbance in hydrology and geomorphology in terrestrial polar landscapes underlain by permafrost, yet measurements of, and theories to understand, these changes are limited. Water flowing from permafrost hillslopes to channels is often modulated by water tracks, zones of enhanced soil moisture in unchannelized depressions that concentrate water flow downslope. Water tracks, which dominate hillslope hydrology in some permafrost landscapes, lack a consistent definition and identification method, and their global occurrence, morphology, climate relationships, and geomorphic roles remain understudied despite their role in the permafrost carbon cycle. Combining a literature review with a synthesis of prior work, we identify uniting and distinguishing characteristics between water tracks from disparate polar sites with a toolkit for future field and remotely sensed identification of water tracks. We place previous studies within a quantitative framework of “top-down” climate and “bottom-up” geology controls on track morphology and hydrogeomorphic function. We find the term “water track” is applied to a broad category of concentrated suprapermafrost flowpaths exhibiting varying morphology, degrees of self-organization, hydraulic characteristics, subsurface composition, vegetation, relationships to thaw tables, and stream order/hillslope position. We propose that the widespread occurrence of water tracks on both poles across varying geologic, ecologic, and climatic factors implies that water tracks are in dynamic equilibrium with the permafrost environment but that they may experience change as the climate continues to warm. Current knowledge gaps include these features' trajectories in the face of ongoing climate change and their role as an analog landform for an active Martian hydrosphere.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024RG000854","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143490007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pan-European Landslide Risk Assessment: From Theory to Practice
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2025-02-21 DOI: 10.1029/2023RG000825
Francesco Caleca, Luigi Lombardo, Stefan Steger, Hakan Tanyas, Federico Raspini, Ashok Dahal, Constantinos Nefros, Mihai Ciprian Mărgărint, Vincent Drouin, Mateja Jemec-Auflič, Alessandro Novellino, Marj Tonini, Marco Loche, Nicola Casagli, Veronica Tofani
{"title":"Pan-European Landslide Risk Assessment: From Theory to Practice","authors":"Francesco Caleca,&nbsp;Luigi Lombardo,&nbsp;Stefan Steger,&nbsp;Hakan Tanyas,&nbsp;Federico Raspini,&nbsp;Ashok Dahal,&nbsp;Constantinos Nefros,&nbsp;Mihai Ciprian Mărgărint,&nbsp;Vincent Drouin,&nbsp;Mateja Jemec-Auflič,&nbsp;Alessandro Novellino,&nbsp;Marj Tonini,&nbsp;Marco Loche,&nbsp;Nicola Casagli,&nbsp;Veronica Tofani","doi":"10.1029/2023RG000825","DOIUrl":"https://doi.org/10.1029/2023RG000825","url":null,"abstract":"<p>Assessing landslide risk is a fundamental requirement to plan suitable prevention actions. To date, most risk studies focus on individual slopes or catchments. Whereas regional, national or continental scale assessments are hardly available because of methodological and/or data limitations. In this contribution, we present an overview of all requirements and limitations in landslide risk studies across all spatial scales, by means of a hybrid form that combines elements of original research with the comprehensive characteristics of a review study. The review critically analyses each component in the landslide risk analysis providing a detailed explanation of their state-of-the-art, with dedicated sections on susceptibility, hazard, exposure, and vulnerability. To put the theoretical framework to test, we also dive into a case study, expressed at the continental scale. Specifically, we take the main European mountain ranges and provide the reader with a textbook example of risk assessment for such a large territory. In doing so, we take into account issues associated with cross-national differences in landslide mapping. As a result, we identify landslide-prone European landscape and explore the associated possible economic consequences (human settlements and agricultural areas). We also analyze the population at risk during daytime and nighttime. Moreover, a modern view of the problem is explored in the form of how risk outcomes should be delivered to master planners and geoscientific personnel alike. Specifically, we convert our output into an interactive Web Application (https://pan-european-landslide-risk.github.io/) to include notions of scientific communication both to a large public as well as to a technical audience.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000825","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143466278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Karst Water Resources in a Changing World: Review of Solute Transport Modeling Approaches
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2025-02-14 DOI: 10.1029/2023RG000811
K. Ö. Çallı, G. Chiogna, D. Bittner, V. Sivelle, D. Labat, B. Richieri, S. S. Çallı, A. Hartmann
{"title":"Karst Water Resources in a Changing World: Review of Solute Transport Modeling Approaches","authors":"K. Ö. Çallı,&nbsp;G. Chiogna,&nbsp;D. Bittner,&nbsp;V. Sivelle,&nbsp;D. Labat,&nbsp;B. Richieri,&nbsp;S. S. Çallı,&nbsp;A. Hartmann","doi":"10.1029/2023RG000811","DOIUrl":"https://doi.org/10.1029/2023RG000811","url":null,"abstract":"<p>Karst water resources are valuable freshwater sources for around 10% of the world's population. Nonetheless, anthropogenic impacts and global changes have seriously deteriorated karst water quality and dependent ecosystems. Multiscale karstic heterogeneity—referring to the spatial variations of the karst aquifer's physical and chemical characteristics at varying scales—is the main challenge in describing karst flow and contaminant transport dynamics. Solute transport models are powerful tools to represent and predict the spatiotemporal behaviors of contaminant migration in karst water resources. By enhancing our understanding of the transport processes, the solute transport models enable us to explore contamination risks and potential outcomes of the contamination-related issues in karst systems. Because of that, they are often used for monitoring, controlling, and managing karst water quality and dependent ecosystem functioning. This paper reviews the current state of knowledge on the modeling of karst transport processes with a focus on single-phase solute transport. By unveiling the fundamental challenges underlying a successful real-world application of karst transport models, we discuss to what extent and how we can handle these challenges. By further deriving the key challenges afront the successful modeling applications in karst systems, we, therefore, provide directions to ensure the reliable modeling of karst transport dynamics in the present context of global changes.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000811","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rock Glacier Velocity: An Essential Climate Variable Quantity for Permafrost
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2025-01-26 DOI: 10.1029/2024RG000847
Yan Hu, Lukas U. Arenson, Chloé Barboux, Xavier Bodin, Alessandro Cicoira, Reynald Delaloye, Isabelle Gärtner-Roer, Andreas Kääb, Andreas Kellerer-Pirklbauer, Christophe Lambiel, Lin Liu, Cécile Pellet, Line Rouyet, Philippe Schoeneich, Gernot Seier, Tazio Strozzi
{"title":"Rock Glacier Velocity: An Essential Climate Variable Quantity for Permafrost","authors":"Yan Hu,&nbsp;Lukas U. Arenson,&nbsp;Chloé Barboux,&nbsp;Xavier Bodin,&nbsp;Alessandro Cicoira,&nbsp;Reynald Delaloye,&nbsp;Isabelle Gärtner-Roer,&nbsp;Andreas Kääb,&nbsp;Andreas Kellerer-Pirklbauer,&nbsp;Christophe Lambiel,&nbsp;Lin Liu,&nbsp;Cécile Pellet,&nbsp;Line Rouyet,&nbsp;Philippe Schoeneich,&nbsp;Gernot Seier,&nbsp;Tazio Strozzi","doi":"10.1029/2024RG000847","DOIUrl":"10.1029/2024RG000847","url":null,"abstract":"<p>Rock glaciers are distinctive debris landforms found worldwide in cold mountainous regions. They express the long-term movement of perennially frozen ground. Rock Glacier Velocity (RGV), defined as the time series of the annualized surface velocity of a rock glacier unit or a part of it, has been accepted as an Essential Climate Variable Permafrost Quantity in 2022. This review aims to highlight the relationship between rock glacier velocity and climatic factors, emphasizing the scientific relevance of interannual rock glacier velocity in generating RGV products within the context of observed rock glacier kinematics. Under global warming, rock glacier velocity exhibits widespread (multi-)decennial acceleration. This acceleration varies regionally in onset timing (from the 1950s to the 2010s) and magnitude (up to a factor of 10), and has been observed in regions such as the European Alps, High Mountain Asia, and the Andes. Despite different local conditions, a synchronous interannual velocity pattern prevails in the European Alps since the 2000s, highlighting the primary influence of climate. A common pattern is the seasonal velocity rhythm, which peaks in late summer to autumn and declines in spring. RGV assesses permafrost evolution via (multi-)decennial and interannual changes in rock glacier velocity, influenced by air temperature shifts with varying time lags and snow cover effects. Although not integrated into the RGV products, seasonal variations should be examined. This rhythmic behavior is attributed to alterations in pore water pressure influenced by air temperature, snow cover, and ground water conditions.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024RG000847","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monitoring and Modeling the Soil-Plant System Toward Understanding Soil Health
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2025-01-25 DOI: 10.1029/2024RG000836
Yijian Zeng, Anne Verhoef, Harry Vereecken, Eyal Ben-Dor, Tom Veldkamp, Liz Shaw, Martine Van Der Ploeg, Yunfei Wang, Zhongbo Su
{"title":"Monitoring and Modeling the Soil-Plant System Toward Understanding Soil Health","authors":"Yijian Zeng,&nbsp;Anne Verhoef,&nbsp;Harry Vereecken,&nbsp;Eyal Ben-Dor,&nbsp;Tom Veldkamp,&nbsp;Liz Shaw,&nbsp;Martine Van Der Ploeg,&nbsp;Yunfei Wang,&nbsp;Zhongbo Su","doi":"10.1029/2024RG000836","DOIUrl":"10.1029/2024RG000836","url":null,"abstract":"<p>The soil health assessment has evolved from focusing primarily on agricultural productivity to an integrated evaluation of soil biota and biotic processes that impact soil properties. Consequently, soil health assessment has shifted from a predominantly physicochemical approach to incorporating ecological, biological and molecular microbiology indicators. This shift enables a comprehensive exploration of soil microbial community properties and their responses to environmental changes arising from climate change and anthropogenic disturbances. Despite the increasing availability of soil health indicators (physical, chemical, and biological) and data, a holistic mechanistic linkage has not yet been fully established between indicators and soil functions across multiple spatiotemporal scales. This article reviews the state-of-the-art of soil health monitoring, focusing on understanding how soil-microbiome-plant processes contribute to feedback mechanisms and causes of changes in soil properties, as well as the impact these changes have on soil functions. Furthermore, we survey the opportunities afforded by the soil-plant digital twin approach, an integrative framework that amalgamates process-based models, Earth Observation data, data assimilation, and physics-informed machine learning, to achieve a nuanced comprehension of soil health. This review delineates the prospective trajectory for monitoring soil health by embracing a digital twin approach to systematically observe and model the soil-plant system. We further identify gaps and opportunities, and provide perspectives for future research for an enhanced understanding of the intricate interplay between soil properties, soil hydrological processes, soil-plant hydraulics, soil microbiome, and landscape genomics.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024RG000836","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143031351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Topography on the Global Terrestrial Water Cycle 地形对全球陆地水循环的影响
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2025-01-03 DOI: 10.1029/2023RG000810
Sebastian Gnann, Jane W. Baldwin, Mark O. Cuthbert, Tom Gleeson, Wolfgang Schwanghart, Thorsten Wagener
{"title":"The Influence of Topography on the Global Terrestrial Water Cycle","authors":"Sebastian Gnann,&nbsp;Jane W. Baldwin,&nbsp;Mark O. Cuthbert,&nbsp;Tom Gleeson,&nbsp;Wolfgang Schwanghart,&nbsp;Thorsten Wagener","doi":"10.1029/2023RG000810","DOIUrl":"10.1029/2023RG000810","url":null,"abstract":"<p>Topography affects the distribution and movement of water on Earth, yet new insights about topographic controls continue to surprise us and exciting puzzles remain. Here we combine literature review and data synthesis to explore the influence of topography on the global terrestrial water cycle, from the atmosphere down to the groundwater. Above the land surface, topography induces gradients and contrasts in water and energy availability. Long-term precipitation usually increases with elevation in the mid-latitudes, while it peaks at low- to mid-elevations in the tropics. Potential evaporation tends to decrease with elevation in all climate zones. At the land surface, topography is expressed in snow distribution, vegetation zonation, geomorphic landforms, the critical zone, and drainage networks. Evaporation and vegetation activity are often highest at low- to mid-elevations where neither temperature, nor energy availability, nor water availability—often modulated by lateral moisture redistribution—impose strong limitations. Below the land surface, topography drives the movement of groundwater from local to continental scales. In many steep upland regions, groundwater systems are well connected to streams and provide ample baseflow, and streams often start losing water in foothills where bedrock transitions into highly permeable sediment. We conclude by presenting organizing principles, discussing the implications of climate change and human activity, and identifying data needs and knowledge gaps. A defining feature resulting from topography is the presence of gradients and contrasts, whose interactions explain many of the patterns we observe in nature and how they might change in the future.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000810","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142924463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impacts of Erosion on the Carbon Cycle 侵蚀对碳循环的影响
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2025-01-02 DOI: 10.1029/2023RG000829
Haiyan Zheng, Chiyuan Miao, Chris Huntingford, Paolo Tarolli, Dongfeng Li, Panos Panagos, Yao Yue, Pasquale Borrelli, Kristof Van Oost
{"title":"The Impacts of Erosion on the Carbon Cycle","authors":"Haiyan Zheng,&nbsp;Chiyuan Miao,&nbsp;Chris Huntingford,&nbsp;Paolo Tarolli,&nbsp;Dongfeng Li,&nbsp;Panos Panagos,&nbsp;Yao Yue,&nbsp;Pasquale Borrelli,&nbsp;Kristof Van Oost","doi":"10.1029/2023RG000829","DOIUrl":"10.1029/2023RG000829","url":null,"abstract":"<p>Physical and chemical erosion associated with water both affect land–atmosphere carbon exchanges. However, previous studies have often addressed these processes separately or used oversimplified mechanisms, leading to ongoing debates and uncertainties about erosion-induced carbon fluxes. We provide an overview of the on-site carbon uptake fluxes induced by physical erosion (0.05–0.29 Pg C yr<sup>−1</sup>, globally) and chemical erosion (0.26–0.48 Pg C yr<sup>−1</sup>). Then, we discuss off-site carbon dynamics (during transport, deposition, and burial). Soil organic carbon mineralization during transport is nearly 0.37–1.20 Pg C yr<sup>−1</sup> on the globe. We also summarize the overall carbon fluxes into estuaries (0.71–1.06 Pg C yr<sup>−1</sup>) and identify the sources of different types of carbon within them, most of which are associated with land erosion. Current approaches for quantifying physical-erosion-induced vertical carbon fluxes focus on two distinct temporal scales: short-term dynamics (ranging from minutes to decades), emphasizing net vertical carbon flux, and long-term dynamics (spanning millennial to geological timescales), examining the fate of eroded carbon over extended periods. In addition to direct chemical measurement and modeling approaches, estimation using indicators of riverine material is popular for constraining chemical-erosion-driven carbon fluxes. Lastly, we highlight the key challenges for quantifying related fluxes. To overcome potential biases in future studies, we strongly recommend integrated research that addresses both physical and chemical erosion over a well-defined timescale. A comprehensive understanding of the mechanisms driving erosion-induced lateral and vertical carbon fluxes is crucial for closing the global carbon budget.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000829","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142911873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effects of Changing Environments, Abiotic Stresses, and Management Practices on Cropland Evapotranspiration: A Review 变化的环境、非生物胁迫和管理措施对农田蒸散的影响
IF 25.2 1区 地球科学
Reviews of Geophysics Pub Date : 2024-12-30 DOI: 10.1029/2024RG000858
Rangjian Qiu, Gabriel G. Katul, Lu Zhang, Shunjing Qin, Xuelian Jiang
{"title":"The Effects of Changing Environments, Abiotic Stresses, and Management Practices on Cropland Evapotranspiration: A Review","authors":"Rangjian Qiu,&nbsp;Gabriel G. Katul,&nbsp;Lu Zhang,&nbsp;Shunjing Qin,&nbsp;Xuelian Jiang","doi":"10.1029/2024RG000858","DOIUrl":"10.1029/2024RG000858","url":null,"abstract":"<p>The significance of crop evapotranspiration (ET<sub>a</sub>) to climate science, agronomic research, and water resources is not in dispute. What continues to draw attention is how variability in ET<sub>a</sub> is driven by changing environments, abiotic stresses, and management practices. Here, the impacts of elevated CO<sub>2</sub> concentration (e[CO<sub>2</sub>]), elevated ozone concentration (e[O<sub>3</sub>]), warming, abiotic stresses (water, salinity, heat stresses), and management practices (planting density, irrigation methods, mulching, nitrogen application) on cropland ET<sub>a</sub> were reviewed, along with their possible causes and estimation. Water and salinity stresses, e[O<sub>3</sub>], and drip irrigation adoption generally led to lower total growing–season ET<sub>a</sub>. However, total growing–season ET<sub>a</sub> responses to e[CO<sub>2</sub>], warming, heat stress, mulching, planting density, and nitrogen supplement appear inconsistent across empirical studies. The effects of e[CO<sub>2</sub>], e[O<sub>3</sub>], water and salinity stresses on total growing–season ET<sub>a</sub> are attributed to their influence on stomatal conductance, root water uptake, root and leaf area development, microclimate, and potentially phenology. Total growing–season ET<sub>a</sub> in response to warming is affected by variations in ambient growing–season mean air temperature and phenology. The differences in crop ET<sub>a</sub> under varying planting densities are due to their differences in leaf area. The responses of ET<sub>a</sub> to heat stress, mulching, and nitrogen application represent trade–off between their opposite effects on transpiration and evaporation, along with possibly phenology. Modified ET<sub>a</sub> models currently in use can estimate the response of ET<sub>a</sub> to the many aforementioned factors except for e[O<sub>3</sub>], heat stress, and nitrogen application. These factors offer a blueprint for future research inquiries.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":25.2,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142905562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信