Francesco Caleca, Luigi Lombardo, Stefan Steger, Hakan Tanyas, Federico Raspini, Ashok Dahal, Constantinos Nefros, Mihai Ciprian Mărgărint, Vincent Drouin, Mateja Jemec-Auflič, Alessandro Novellino, Marj Tonini, Marco Loche, Nicola Casagli, Veronica Tofani
{"title":"Pan-European Landslide Risk Assessment: From Theory to Practice","authors":"Francesco Caleca, Luigi Lombardo, Stefan Steger, Hakan Tanyas, Federico Raspini, Ashok Dahal, Constantinos Nefros, Mihai Ciprian Mărgărint, Vincent Drouin, Mateja Jemec-Auflič, Alessandro Novellino, Marj Tonini, Marco Loche, Nicola Casagli, Veronica Tofani","doi":"10.1029/2023RG000825","DOIUrl":null,"url":null,"abstract":"<p>Assessing landslide risk is a fundamental requirement to plan suitable prevention actions. To date, most risk studies focus on individual slopes or catchments. Whereas regional, national or continental scale assessments are hardly available because of methodological and/or data limitations. In this contribution, we present an overview of all requirements and limitations in landslide risk studies across all spatial scales, by means of a hybrid form that combines elements of original research with the comprehensive characteristics of a review study. The review critically analyses each component in the landslide risk analysis providing a detailed explanation of their state-of-the-art, with dedicated sections on susceptibility, hazard, exposure, and vulnerability. To put the theoretical framework to test, we also dive into a case study, expressed at the continental scale. Specifically, we take the main European mountain ranges and provide the reader with a textbook example of risk assessment for such a large territory. In doing so, we take into account issues associated with cross-national differences in landslide mapping. As a result, we identify landslide-prone European landscape and explore the associated possible economic consequences (human settlements and agricultural areas). We also analyze the population at risk during daytime and nighttime. Moreover, a modern view of the problem is explored in the form of how risk outcomes should be delivered to master planners and geoscientific personnel alike. Specifically, we convert our output into an interactive Web Application (https://pan-european-landslide-risk.github.io/) to include notions of scientific communication both to a large public as well as to a technical audience.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"63 1","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023RG000825","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023RG000825","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Assessing landslide risk is a fundamental requirement to plan suitable prevention actions. To date, most risk studies focus on individual slopes or catchments. Whereas regional, national or continental scale assessments are hardly available because of methodological and/or data limitations. In this contribution, we present an overview of all requirements and limitations in landslide risk studies across all spatial scales, by means of a hybrid form that combines elements of original research with the comprehensive characteristics of a review study. The review critically analyses each component in the landslide risk analysis providing a detailed explanation of their state-of-the-art, with dedicated sections on susceptibility, hazard, exposure, and vulnerability. To put the theoretical framework to test, we also dive into a case study, expressed at the continental scale. Specifically, we take the main European mountain ranges and provide the reader with a textbook example of risk assessment for such a large territory. In doing so, we take into account issues associated with cross-national differences in landslide mapping. As a result, we identify landslide-prone European landscape and explore the associated possible economic consequences (human settlements and agricultural areas). We also analyze the population at risk during daytime and nighttime. Moreover, a modern view of the problem is explored in the form of how risk outcomes should be delivered to master planners and geoscientific personnel alike. Specifically, we convert our output into an interactive Web Application (https://pan-european-landslide-risk.github.io/) to include notions of scientific communication both to a large public as well as to a technical audience.
期刊介绍:
Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.