Regenerative Biomaterials最新文献

筛选
英文 中文
Research progresses on mitochondrial-targeted biomaterials for bone defect repair 用于骨缺损修复的线粒体靶向生物材料研究取得进展
IF 5.6 1区 医学
Regenerative Biomaterials Pub Date : 2024-07-01 DOI: 10.1093/rb/rbae082
Shuze Wang, Jialin Liu, Linxi Zhou, Hao Xu, Dan Zhang, Xing Zhang, Qiang Wang, Qing Zhou
{"title":"Research progresses on mitochondrial-targeted biomaterials for bone defect repair","authors":"Shuze Wang, Jialin Liu, Linxi Zhou, Hao Xu, Dan Zhang, Xing Zhang, Qiang Wang, Qing Zhou","doi":"10.1093/rb/rbae082","DOIUrl":"https://doi.org/10.1093/rb/rbae082","url":null,"abstract":"\u0000 In recent years, the regulation of the cell microenvironment has opened up new avenues for bone defect repair. Researchers have developed novel biomaterials to influence the behavior of osteoblasts and immune cells by regulating the microenvironment, aiming to achieve efficient bone repair. Mitochondria, as crucial organelles involved in energy conversion, biosynthesis, and signal transduction, play a vital role in maintaining bone integrity. Dysfunction of mitochondria can have detrimental effects on the transformation of the immune microenvironment and the differentiation of stem cells, thereby hindering bone tissue regeneration. Consequently, targeted therapy strategies focusing on mitochondria have emerged. This approach offers a wide range of applications and reliable therapeutic effects, thereby providing a new treatment option for complex and refractory bone defect diseases. In recent studies, more biomaterials have been used to restore mitochondrial function and promote positive cell differentiation. The main directions are mitochondrial energy metabolism, mitochondrial biogenesis, and mitochondrial quality control. In this review, we investigated the biomaterials used for mitochondria-targeted treatment of bone defect repair in recent years from the perspective of progress and strategies. We also summarized the micro-molecular mechanisms affected by them. Through discussions on energy metabolism, oxidative stress regulation, and autophagy regulation, we emphasized the opportunities and challenges faced by mitochondria-targeted biomaterials, providing vital clues for developing a new generation of bone repair materials.","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141704154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combination of gene/protein and metabolite multiomics to reveal biomarkers of nickel ion cytotoxicity and the underlying mechanism. 结合基因/蛋白质和代谢物多组学揭示镍离子细胞毒性的生物标记物及其内在机制。
IF 5.6 1区 医学
Regenerative Biomaterials Pub Date : 2024-06-29 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae079
Yan Huang, Fudan Zhang, Yajing Zhang, Rong Chen, Xiaoying Lü
{"title":"Combination of gene/protein and metabolite multiomics to reveal biomarkers of nickel ion cytotoxicity and the underlying mechanism.","authors":"Yan Huang, Fudan Zhang, Yajing Zhang, Rong Chen, Xiaoying Lü","doi":"10.1093/rb/rbae079","DOIUrl":"10.1093/rb/rbae079","url":null,"abstract":"<p><p>Biomarkers have been applied for toxicity assessment of biomaterials due to their advantages. However, research on biomarkers for biomaterials is still in its early stages. There is a lack of integrated analysis in biomarker research based on multiomics studies. Herein, we report a new approach for combining of gene/protein and metabolite multiomics to reveal biomarkers of nickel ion (Ni<sup>2+</sup>) cytotoxicity and the underlying mechanism. Firstly, differentially expressed genes and proteins were compared to screen gene/protein pairs exhibiting consistent differential expression within the same Ni<sup>2+</sup>-treated groups. Next, metabolic pathway analysis was carried out to reveal pathways in which gene/protein pairs and metabolites showed upstream and downstream relationships. Important networks composed of gene/protein pairs, metabolites and metabolic pathways and candidate biomarkers were subsequently identified. Through expression level and function validation, the gene/protein/metabolite biomarkers were confirmed, and the underlying mechanism was revealed: Ni<sup>2+</sup> influenced the expression of the <i>Rrm2</i> gene biomarker, which subsequently affected the expression of the RRM2 protein biomarker. These changes in turn impacted the levels of uric acid and uridine metabolite biomarkers, ultimately inhibiting DNA synthesis, suppressing cell proliferation, increasing intracellular ROS levels and reducing ATP content.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exosomes-based dual drug-loaded nanocarrier for targeted and multiple proliferative vitreoretinopathy therapy. 基于外泌体的双重载药纳米载体,用于靶向和多发性增殖性玻璃体视网膜病变治疗。
IF 5.6 1区 医学
Regenerative Biomaterials Pub Date : 2024-06-29 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae081
Peiyi Zhao, Jiahao Wang, Huiying Huang, Zhirong Chen, Hui Wang, Quankui Lin
{"title":"Exosomes-based dual drug-loaded nanocarrier for targeted and multiple proliferative vitreoretinopathy therapy.","authors":"Peiyi Zhao, Jiahao Wang, Huiying Huang, Zhirong Chen, Hui Wang, Quankui Lin","doi":"10.1093/rb/rbae081","DOIUrl":"10.1093/rb/rbae081","url":null,"abstract":"<p><p>Proliferative vitreoretinopathy (PVR) is a common cause of vision loss after retinal reattachment surgery and ocular trauma. The key pathogenic mechanisms of PVR development include the proliferation, migration and epithelial-mesenchymal transition (EMT) of retinal pigment epithelial cells (RPEs) activated by the growth factors and cytokines after surgery. Although some drugs have been tried in PVR treatments as basic investigations, the limited efficacy remains an obstacle, which may be due to the single pharmacological action and lack of targeting. Herein, the anti-proliferative Daunorubicin and anti-inflammatory Dexamethasone were co-loaded in the RPEs-derived exosomes (Exos), obtaining an Exos-based dual drug-loaded nanocarrier (Exos@D-D), and used for multiple PVR therapy. Owing to the advantages of homologous Exos and the dual drug loading, Exos@D-D showed good RPEs targeting as well as improved uptake efficiency, and could inhibit the proliferation, migration, as well as EMT of RPEs effectively. The animal studies have also demonstrated that Exos@D-D effectively inhibits the production of proliferative membranes and prevents the further development of inflammation, shows significant therapeutic effects on PVR and good biocompatibility. Such Exos-based dual drug-loaded nanocarrier investigation not only provides a promising approach for multifunctional exosome drug delivery systems construction, but also has great potential in PVR clinical therapy application.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printing materials and 3D printed surgical devices in oral and maxillofacial surgery: design, workflow and effectiveness. 口腔颌面外科中的 3D 打印材料和 3D 打印手术器械:设计、工作流程和效果。
IF 5.6 1区 医学
Regenerative Biomaterials Pub Date : 2024-06-27 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae066
Xiaoxiao Wang, Min Mu, Jiazhen Yan, Bo Han, Rui Ye, Gang Guo
{"title":"3D printing materials and 3D printed surgical devices in oral and maxillofacial surgery: design, workflow and effectiveness.","authors":"Xiaoxiao Wang, Min Mu, Jiazhen Yan, Bo Han, Rui Ye, Gang Guo","doi":"10.1093/rb/rbae066","DOIUrl":"10.1093/rb/rbae066","url":null,"abstract":"<p><p>Oral and maxillofacial surgery is a specialized surgical field devoted to diagnosing and managing conditions affecting the oral cavity, jaws, face and related structures. In recent years, the integration of 3D printing technology has revolutionized this field, offering a range of innovative surgical devices such as patient-specific implants, surgical guides, splints, bone models and regenerative scaffolds. In this comprehensive review, we primarily focus on examining the utility of 3D-printed surgical devices in the context of oral and maxillofacial surgery and evaluating their efficiency. Initially, we provide an insightful overview of commonly utilized 3D-printed surgical devices, discussing their innovations and clinical applications. Recognizing the pivotal role of materials, we give consideration to suitable biomaterials and printing technology of each device, while also introducing the emerging fields of regenerative scaffolds and bioprinting. Furthermore, we delve into the transformative impact of 3D-printed surgical devices within specific subdivisions of oral and maxillofacial surgery, placing particular emphasis on their rejuvenating effects in bone reconstruction, orthognathic surgery, temporomandibular joint treatment and other applications. Additionally, we elucidate how the integration of 3D printing technology has reshaped clinical workflows and influenced treatment outcomes in oral and maxillofacial surgery, providing updates on advancements in ensuring accuracy and cost-effectiveness in 3D printing-based procedures.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142020113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and performance of double-layered artificial chordae. 双层人工腱鞘的设计和性能。
IF 5.6 1区 医学
Regenerative Biomaterials Pub Date : 2024-06-27 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae076
Tingchao Zhang, Yichen Dou, Yang Li, Rifang Luo, Li Yang, Weiwei Zhang, Yunbing Wang, Xingdong Zhang
{"title":"Design and performance of double-layered artificial chordae.","authors":"Tingchao Zhang, Yichen Dou, Yang Li, Rifang Luo, Li Yang, Weiwei Zhang, Yunbing Wang, Xingdong Zhang","doi":"10.1093/rb/rbae076","DOIUrl":"10.1093/rb/rbae076","url":null,"abstract":"<p><p>Surgical repair with artificial chordae replacement has emerged as a standard treatment for mitral regurgitation. Expanded polytetrafluoroethylene (ePTFE) sutures are commonly employed as artificial chordae; however, they have certain limitations, such as potential long-term rupture and undesired material/tissue response. This study introduces a novel approach to artificial chordae design, termed the New Artificial Chordae (NAC), which incorporates a double-layered structure. The NAC comprises a multi-strand braided core composed of ultra-high molecular weight polyethylene (UHMWPE) fibers as the inner core, and an outer tube made of hydrophobic porous ePTFE. Compared to traditional ePTFE sutures, NAC exhibits increased flexibility, enhanced tensile strength, longer elongation and improved fatigue resistance. Moreover, NAC exhibits a more hydrophobic surface, which contributes to enhanced hemocompatibility. The study also includes <i>in vivo</i> investigations conducted on animal models to evaluate the biocompatibility and functional efficacy of the artificial chordae. These experiments demonstrate the enhanced durability and biocompatibility of the NAC, characterized by improved mechanical strength, minimal tissue response and reduced thrombus formation. These findings suggest the potential application of NAC as a prosthetic chordae replacement, offering promising prospects to address the limitations associated with current artificial chordae materials and providing novel ideas and approaches for the development of sustainable and biocompatible regenerative biomaterials.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269677/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In situ co-deposition synthesis for collagen-Astragalus polysaccharide composite with intrafibrillar mineralization as potential biomimetic-bone repair materials. 原位共沉积合成具有纤维内矿化的胶原-黄芪多糖复合材料,作为潜在的仿生骨修复材料。
IF 5.6 1区 医学
Regenerative Biomaterials Pub Date : 2024-06-21 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae070
Han Li, Ziying Guan, Liren Wei, Jian Lu, Yanfei Tan, Qingrong Wei
{"title":"<i>In situ</i> co-deposition synthesis for collagen-Astragalus polysaccharide composite with intrafibrillar mineralization as potential biomimetic-bone repair materials.","authors":"Han Li, Ziying Guan, Liren Wei, Jian Lu, Yanfei Tan, Qingrong Wei","doi":"10.1093/rb/rbae070","DOIUrl":"10.1093/rb/rbae070","url":null,"abstract":"<p><p>A hybrid material possessing both componential and structural imitation of bone tissue is the preferable composites for bone defect repair. Inspired by the microarchitecture of native bone, this work synthesized <i>in vitro</i> a functional mineralized collagen fibril (MCF) material by utilizing the method of <i>in situ</i> co-precipitation, which was designed to proceed in the presence of Astragalus polysaccharide (APS), thus achieving APS load within the biomineralized collagen-Astragalus polysaccharide (MCAPS) fibrils. Transmission electron microscope (TEM), selected area electron diffraction (SAED) and scanning electronic microscopy (SEM) identified the details of the intrafibrillar mineralization of the MCAPS fibrils, almost mimicking the secondary level of bone tissue microstructure. A relatively uniform and continuous mineral layer formed on and within all collagen fibrils and the mineral phase was identified as typical weak-crystalline hydroxyapatite (HA) with a Ca/P ratio of about 1.53. The proliferation of bone marrow-derived mesenchymal stem cells (BMSC) and mouse embryo osteoblast precursor cells (MC3T3-E1) obtained a significant promotion by MCAPS. As for the osteogenic properties of MCAPS, a distinct increase in the alkaline phosphatase (ALP) activity and the number of calcium nodules (CN) in BMSC and MC3T3-E1 was detected. The up-regulation of three osteogenic-related genes of RUNX-2, BMP-2 and OCN were confirmed via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to further verify the osteogenic performance promotion of MCAPS. A period of 14 days of culture demonstrated that MCAPS-L exhibited a preferable efficacy in enhancing ALP activity and CN quantity, as well as in promoting the expression of osteogenic-related genes over MCAPS-M and MCAPS-H, indicating that a lower dose of APS within the material of MCAPS is more appropriate for its osteogenesis promotion properties.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254354/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quadriceps recovery and pain relief in knee osteoarthritis rats by cog polydioxanone filament insertion. 通过插入 cog 聚二氧杂蒽酮丝,膝关节骨性关节炎大鼠的股四头肌恢复和疼痛缓解。
IF 5.6 1区 医学
Regenerative Biomaterials Pub Date : 2024-06-21 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae077
Myeounghoon Cha, Heyji Bak, Sun Joon Bai, Bae Hwan Lee, Jun Ho Jang
{"title":"Quadriceps recovery and pain relief in knee osteoarthritis rats by cog polydioxanone filament insertion.","authors":"Myeounghoon Cha, Heyji Bak, Sun Joon Bai, Bae Hwan Lee, Jun Ho Jang","doi":"10.1093/rb/rbae077","DOIUrl":"10.1093/rb/rbae077","url":null,"abstract":"<p><p>Quadriceps muscles play a pivotal role in knee osteoarthritis (OA) progression and symptom manifestation, particularly pain. This research investigates the therapeutic effectiveness of muscle enhancement and support therapy (MEST), a recently developed device intended for intramuscular insertion of cog polydioxanone filaments, in quadriceps restoration to alleviate OA pain. Knee OA was induced in Sprague Dawley rats via monoiodoacetate injections. MEST or sham treatment was performed in OA or Naive rat quadriceps. Pain was assessed using paw withdrawal threshold and weight bearing. Quadriceps injury and recovery via MEST were evaluated using biomarkers, tissue morphology, muscle mass, contractile force and hindlimb torque. Satellite cell and macrophage activation, along with their activators, were also assessed. Data were compared at 1- and 3-weeks post-MEST treatment (M-W1 and M-W3). MEST treatment in OA rats caused muscle injury, indicated by elevated serum aspartate transferase and creatinine kinase levels, and local β-actin changes at M-W1. This injury triggered pro-inflammatory macrophage and satellite cell activation, accompanied by heightened interleukin-6 and insulin-like growth factor-1 levels. However, by M-W3, these processes gradually shifted toward inflammation resolution and muscle restoration. This was seen in anti-inflammatory macrophage phenotypes, sustained satellite cell activation and injury markers regressing to baseline. Quadriceps recovery in mass and strength from atrophy correlated with substantial OA pain reduction at M-W3. This study suggests that MEST-induced minor muscle injury triggers macrophage and satellite cell activation, leading to recovery of atrophied quadriceps and pain relief in OA rats.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226885/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The therapeutic efficacy of different configuration nano-polydopamine drug carrier systems with photothermal synergy against head and neck squamous cell carcinoma. 具有光热协同作用的不同构型纳米多巴胺药物载体系统对头颈部鳞状细胞癌的疗效。
IF 5.6 1区 医学
Regenerative Biomaterials Pub Date : 2024-06-20 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae073
Yuhao Guo, Bo Li, Huixu Xie, Chenzhou Wu, Guixue Wang, Kexin Yao, Longjiang Li
{"title":"The therapeutic efficacy of different configuration nano-polydopamine drug carrier systems with photothermal synergy against head and neck squamous cell carcinoma.","authors":"Yuhao Guo, Bo Li, Huixu Xie, Chenzhou Wu, Guixue Wang, Kexin Yao, Longjiang Li","doi":"10.1093/rb/rbae073","DOIUrl":"10.1093/rb/rbae073","url":null,"abstract":"<p><p>Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor worldwide. Considering its special anatomical site and the progressive resistance to chemotherapy drugs, the development of more effective, minimally invasive and precise treatment methods is urgently needed. Nanomaterials, given their special properties, can be used as drug carrier systems to improve the therapeutic effect and reduce the adverse effects. The drug carrier systems with photothermal effect can promote the killing of cancer cells and help overcome drug resistance through heat stress. We selected dopamine, a simple raw material, and designed and synthesized three different configurations of nano-polydopamine (nPDA) nanomaterials, including nPDA balls, nPDA plates and porous nPDA balls. In addition to the self-polymerization and self-assembly, nPDA has high photothermal conversion efficiency and can be easily modified. Moreover, we loaded cisplatin into three different configurations of nPDA, creating nPDA-cis (the nano-drug carrier system with cisplatin), and comparatively studied the properties and antitumor effects of all the nPDA and nPDA-cis materials <i>in vitro</i> and nPDA-cis <i>in vivo</i>. We found that the photothermal effect of the nPDA-cis balls drug carrier system had synergistic effect with cisplatin, resulting in excellent antitumor effect and good clinical application prospects. The comparison of the three different configurations of drug carrier systems suggested the importance of optimizing the spatial configuration design and examining the physical and chemical properties in the future development of nano-drug carrier systems. In this study, we also noted the duality and complexity of the influences of heat stress on tumors <i>in vitro</i> and <i>in vivo</i>. The specific mechanisms and the synergy with chemotherapy and immunotherapy will be an important research direction in the future.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11256922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic fibrin nanofiber hydrogel delivering iron oxide magnetic nanoparticles promotes peripheral nerve regeneration. 输送氧化铁磁性纳米颗粒的磁性纤维蛋白纳米纤维水凝胶可促进外周神经再生。
IF 5.6 1区 医学
Regenerative Biomaterials Pub Date : 2024-06-20 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae075
Juncong Hong, Dongze Wu, Haitao Wang, Zhe Gong, Xinxin Zhu, Fang Chen, Zihang Wang, Mingchen Zhang, Xiumei Wang, Xiangqian Fang, Shuhui Yang, Jinjin Zhu
{"title":"Magnetic fibrin nanofiber hydrogel delivering iron oxide magnetic nanoparticles promotes peripheral nerve regeneration.","authors":"Juncong Hong, Dongze Wu, Haitao Wang, Zhe Gong, Xinxin Zhu, Fang Chen, Zihang Wang, Mingchen Zhang, Xiumei Wang, Xiangqian Fang, Shuhui Yang, Jinjin Zhu","doi":"10.1093/rb/rbae075","DOIUrl":"10.1093/rb/rbae075","url":null,"abstract":"<p><p>Peripheral nerve injury is a debilitating condition that have a profound impact on the overall quality of an individual's life. The repair of peripheral nerve defects continues to present significant challenges in the field. Iron oxide magnetic nanoparticles (IONPs) have been recognized as potent nanotools for promoting the regeneration of peripheral nerves due to their capability as biological carriers and their ability to template the hydrogel structure under an external magnetic field. This research used a fibrin nanofiber hydrogel loaded with IONPs (IONPs/fibrin) to promote the regeneration of peripheral nerves in rats. <i>In vitro</i> examination of PC12 cells on various concentrations of IONPs/fibrin hydrogels revealed a remarkable increase in NGF and VEGF expression at 2% IONPs concentration. The biocompatibility and degradation of 2% IONPs/fibrin hydrogel were assessed using the <i>in vivo</i> imaging system, demonstrating subcutaneous degradation within a week without immediate inflammation. Bridging a 10-mm sciatic nerve gap in Sprague Dawley rats with 2% IONPs/fibrin hydrogel led to satisfactory morphological recovery of myelinated nerve fibers. And motor functional recovery in the 2% IONPs/fibrin group was comparable to autografts at 6, 9 and 12 weeks postoperatively. Hence, the composite fibrin hydrogel incorporating 2% IONPs exhibits potential for peripheral nerve regeneration.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272175/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141760627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Promotion of cardiac microtissue assembly within G-CSF-enriched collagen I-cardiogel hybrid hydrogel. 促进心脏微组织在富含 G-CSF 的胶原 I-心凝胶杂交水凝胶中组装。
IF 5.6 1区 医学
Regenerative Biomaterials Pub Date : 2024-06-19 eCollection Date: 2024-01-01 DOI: 10.1093/rb/rbae072
Hamid Khodayari, Saeed Khodayari, Malihe Rezaee, Siamak Rezaeiani, Mahmoud Alipour Choshali, Saiedeh Erfanian, Ahad Muhammadnejad, Fatemeh Nili, Yasaman Pourmehran, Reihaneh Pirjani, Sarah Rajabi, Naser Aghdami, Canan Nebigil-Désaubry, Kai Wang, Habibollah Mahmoodzadeh, Sara Pahlavan
{"title":"Promotion of cardiac microtissue assembly within G-CSF-enriched collagen I-cardiogel hybrid hydrogel.","authors":"Hamid Khodayari, Saeed Khodayari, Malihe Rezaee, Siamak Rezaeiani, Mahmoud Alipour Choshali, Saiedeh Erfanian, Ahad Muhammadnejad, Fatemeh Nili, Yasaman Pourmehran, Reihaneh Pirjani, Sarah Rajabi, Naser Aghdami, Canan Nebigil-Désaubry, Kai Wang, Habibollah Mahmoodzadeh, Sara Pahlavan","doi":"10.1093/rb/rbae072","DOIUrl":"10.1093/rb/rbae072","url":null,"abstract":"<p><p>Tissue engineering as an interdisciplinary field of biomedical sciences has raised many hopes in the treatment of cardiovascular diseases as well as development of <i>in vitro</i> three-dimensional (3D) cardiac models. This study aimed to engineer a cardiac microtissue using a natural hybrid hydrogel enriched by granulocyte colony-stimulating factor (G-CSF), a bone marrow-derived growth factor. Cardiac ECM hydrogel (Cardiogel: CG) was mixed with collagen type I (ColI) to form the hybrid hydrogel, which was tested for mechanical and biological properties. Three cell types (cardiac progenitor cells, endothelial cells and cardiac fibroblasts) were co-cultured in the G-CSF-enriched hybrid hydrogel to form a 3D microtissue. ColI markedly improved the mechanical properties of CG in the hybrid form with a ratio of 1:1. The hybrid hydrogel demonstrated acceptable biocompatibility and improved retention of encapsulated human foreskin fibroblasts. Co-culture of three cell types in G-CSF enriched hybrid hydrogel, resulted in a faster 3D structure shaping and a well-cellularized microtissue with higher angiogenesis compared to growth factor-free hybrid hydrogel (control). Immunostaining confirmed the presence of CD31<sup>+</sup> tube-like structures as well as vimentin<sup>+</sup> cardiac fibroblasts and cTNT<sup>+</sup> human pluripotent stem cells-derived cardiomyocytes. Bioinformatics analysis of signaling pathways related to the G-CSF receptor in cardiovascular lineage cells, identified target molecules. The <i>in silico</i>-identified STAT3, as one of the major molecules involved in G-CSF signaling of cardiac tissue, was upregulated in G-CSF compared to control. The G-CSF-enriched hybrid hydrogel could be a promising candidate for cardiac tissue engineering, as it facilitates tissue formation and angiogenesis.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信