Shunyao Li, Kai Xu, Huaixuan Sheng, Huizhu Li, Xiao Zhang, Chengxuan Yu, Haichen Hu, Xiner Du, Yunxia Li, Yu Dong, Jun Chen, Sijia Feng
{"title":"利用NIR-II荧光成像在小鼠模型中对胶原降解的体内动态可视化和评价。","authors":"Shunyao Li, Kai Xu, Huaixuan Sheng, Huizhu Li, Xiao Zhang, Chengxuan Yu, Haichen Hu, Xiner Du, Yunxia Li, Yu Dong, Jun Chen, Sijia Feng","doi":"10.1093/rb/rbaf025","DOIUrl":null,"url":null,"abstract":"<p><p>Collagen-based biomaterials are gaining prominence in tissue engineering, attributed to their remarkable biocompatibility, inherent biodegradability, and unparalleled capacity to facilitate tissue repair and regeneration. However, the ability to dynamically visualize and quantitatively assess collagen degradation <i>in vivo</i> remains a critical challenge, hindering the development of optimized biomaterials for clinical applications. To address this, a novel approach was developed to monitor the injury microenvironment by conjugating second near-infrared quantum dots with solid collagen. This live imaging system offered high-resolution, real-time tracking of collagen degradation both <i>in vitro</i> and <i>in vivo</i>, enabling a deeper understanding of the degradation behavior under various conditions. This system was applied to mouse models with different cartilage defects, including critical-sized defect (CSD), minor defect (Minor) and sham surgery (Sham) groups for a 28-day <i>in vivo</i> monitoring. Among them, the CSD group exhibited the fastest and most stable collagen degradation, indicating that the degradation rate was closely linked to the severity of the injury. Transcriptomic analysis further identified key signaling pathways that might drive rapid collagen degradation by promoting collagenase activity and tissue remodeling in cartilage defect conditions. In summary, our study provided valuable insights into the mechanisms of collagen degradation under different injury conditions, contributing to innovative strategies for designing collagen-related biomaterials in the future.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbaf025"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12094926/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>In vivo</i> dynamic visualization and evaluation of collagen degradation utilizing NIR-II fluorescence imaging in mice models.\",\"authors\":\"Shunyao Li, Kai Xu, Huaixuan Sheng, Huizhu Li, Xiao Zhang, Chengxuan Yu, Haichen Hu, Xiner Du, Yunxia Li, Yu Dong, Jun Chen, Sijia Feng\",\"doi\":\"10.1093/rb/rbaf025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Collagen-based biomaterials are gaining prominence in tissue engineering, attributed to their remarkable biocompatibility, inherent biodegradability, and unparalleled capacity to facilitate tissue repair and regeneration. However, the ability to dynamically visualize and quantitatively assess collagen degradation <i>in vivo</i> remains a critical challenge, hindering the development of optimized biomaterials for clinical applications. To address this, a novel approach was developed to monitor the injury microenvironment by conjugating second near-infrared quantum dots with solid collagen. This live imaging system offered high-resolution, real-time tracking of collagen degradation both <i>in vitro</i> and <i>in vivo</i>, enabling a deeper understanding of the degradation behavior under various conditions. This system was applied to mouse models with different cartilage defects, including critical-sized defect (CSD), minor defect (Minor) and sham surgery (Sham) groups for a 28-day <i>in vivo</i> monitoring. Among them, the CSD group exhibited the fastest and most stable collagen degradation, indicating that the degradation rate was closely linked to the severity of the injury. Transcriptomic analysis further identified key signaling pathways that might drive rapid collagen degradation by promoting collagenase activity and tissue remodeling in cartilage defect conditions. In summary, our study provided valuable insights into the mechanisms of collagen degradation under different injury conditions, contributing to innovative strategies for designing collagen-related biomaterials in the future.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"12 \",\"pages\":\"rbaf025\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12094926/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbaf025\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbaf025","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
In vivo dynamic visualization and evaluation of collagen degradation utilizing NIR-II fluorescence imaging in mice models.
Collagen-based biomaterials are gaining prominence in tissue engineering, attributed to their remarkable biocompatibility, inherent biodegradability, and unparalleled capacity to facilitate tissue repair and regeneration. However, the ability to dynamically visualize and quantitatively assess collagen degradation in vivo remains a critical challenge, hindering the development of optimized biomaterials for clinical applications. To address this, a novel approach was developed to monitor the injury microenvironment by conjugating second near-infrared quantum dots with solid collagen. This live imaging system offered high-resolution, real-time tracking of collagen degradation both in vitro and in vivo, enabling a deeper understanding of the degradation behavior under various conditions. This system was applied to mouse models with different cartilage defects, including critical-sized defect (CSD), minor defect (Minor) and sham surgery (Sham) groups for a 28-day in vivo monitoring. Among them, the CSD group exhibited the fastest and most stable collagen degradation, indicating that the degradation rate was closely linked to the severity of the injury. Transcriptomic analysis further identified key signaling pathways that might drive rapid collagen degradation by promoting collagenase activity and tissue remodeling in cartilage defect conditions. In summary, our study provided valuable insights into the mechanisms of collagen degradation under different injury conditions, contributing to innovative strategies for designing collagen-related biomaterials in the future.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.