{"title":"Correction to: Constructing a highly efficient multifunctional carbon quantum dot platform for the treatment of infectious wounds.","authors":"","doi":"10.1093/rb/rbae120","DOIUrl":"https://doi.org/10.1093/rb/rbae120","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/rb/rbae105.].</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Li Ma, Jinbin Pan, Gang Shu, Haiyan Pan, Jingang Li, Dong Li, Shaokai Sun
{"title":"Non-invasive fast assessment of hepatic injury through computed tomography imaging with renal-clearable Bi-DTPA dimeglumine.","authors":"Li Ma, Jinbin Pan, Gang Shu, Haiyan Pan, Jingang Li, Dong Li, Shaokai Sun","doi":"10.1093/rb/rbae118","DOIUrl":"https://doi.org/10.1093/rb/rbae118","url":null,"abstract":"<p><p>Enhanced computed tomography (CT) imaging with iodinated imaging probes is widely utilized for the diagnosis and evaluation of various liver diseases. However, these iodine-based imaging probes face intractable limitations including allergic reactions and contraindications. Herein, we propose the utilization of renal-clearable iodine-free bismuth chelate (Bi-DTPA dimeglumine) for the non-invasive fast assessment of hepatic ischemia-reperfusion injury (HIRI) <i>via</i> CT imaging for the first time. Bi-DTPA dimeglumine offers several advantages such as simple synthesis, no purification requirement, a yield approaching 100%, large-scale production capability (laboratory synthesis > 100 g), excellent biocompatibility and superior CT imaging performance. In a normal rat model, the administration of Bi-DTPA dimeglumine resulted in a significant 63.79% increase in liver CT value within a very short time period (30 s). Furthermore, in a HIRI rat model, Bi-DTPA dimeglumine enabled the rapid differentiation between healthy and injured areas based on the notable disparity in liver CT values as early as 15 min post-reperfusion, which showed a strong correlation with the histopathological analysis results. Additionally, Bi-DTPA dimeglumine can be almost eliminated from the body <i>via</i> the kidneys within 24 h. As an inherently advantageous alternative to iodinated imaging probes, Bi-DTPA dimeglumine exhibits promising prospects for application in liver disease diagnosis.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Álvaro Sierra-Sánchez, Jorge Cabañas-Penagos, Sandra Igual-Roger, Luis Martínez-Heredia, Olga Espinosa-Ibáñez, Raquel Sanabria-de la Torre, María I Quiñones-Vico, Ana Ubago-Rodríguez, Antonio Lizana-Moreno, Ana Fernández-González, Jorge Guerrero-Calvo, Natividad Fernández-Porcel, Arena Ramírez-Muñoz, Salvador Arias-Santiago
{"title":"Biological properties and characterization of several variations of a clinical human plasma-based skin substitute model and its manufacturing process.","authors":"Álvaro Sierra-Sánchez, Jorge Cabañas-Penagos, Sandra Igual-Roger, Luis Martínez-Heredia, Olga Espinosa-Ibáñez, Raquel Sanabria-de la Torre, María I Quiñones-Vico, Ana Ubago-Rodríguez, Antonio Lizana-Moreno, Ana Fernández-González, Jorge Guerrero-Calvo, Natividad Fernández-Porcel, Arena Ramírez-Muñoz, Salvador Arias-Santiago","doi":"10.1093/rb/rbae115","DOIUrl":"10.1093/rb/rbae115","url":null,"abstract":"<p><p>Human plasma is a natural biomaterial that due to their protein composition is widely used for the development of clinical products, especially in the field of dermatology. In this context, this biomaterial has been used as a scaffold alone or combined with others for the development of cellular human plasma-based skin substitutes (HPSSs). Herein, the biological properties (cell viability, cell metabolic activity, protein secretion profile and histology) of several variations of a clinical HPSS model, regarding the biomaterial composition (alone or combined with six secondary biomaterials - serine, fibronectin, collagen, two types of laminins and hyaluronic acid), the cellular structure (trilayer, bilayer, monolayer and control without cells) and their skin tissue of origin (abdominal or foreskin cells) and the manufacturing process [effect of partial dehydration process in cell viability and comparison between submerged (SUB) and air/liquid interface (ALI) methodologies] have been evaluated and compared. Results reveal that the use of human plasma as a main biomaterial determines the <i>in vitro</i> properties, rather than the secondary biomaterials added. Moreover, the characteristics are similar regardless of the skin cells used (from abdomen or foreskin). However, the manufacture of more complex cellular substitutes (trilayer and bilayer) has been demonstrated to be better in terms of cell viability, metabolic activity and wound healing protein secretion (bFGF, EGF, VEGF-A, CCL5) than monolayer HPSSs, especially when ALI culture methodology is applied. Moreover, the application of the dehydration, although required to achieve an appropriate clinical structure, reduce cell viability in all cases. These data indicate that this HPSS model is robust and reliable and that the several subtypes here analysed could be promising clinical approaches depending on the target dermatological disease.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hygroscopic bioactive light-cured composite promoting dentine bridge formation.","authors":"Yunzi Long, Guibin Huang, Siyi Liu, Liju Xu, Ailing Li, Dong Qiu, Yanmei Dong","doi":"10.1093/rb/rbae114","DOIUrl":"https://doi.org/10.1093/rb/rbae114","url":null,"abstract":"<p><p>A light-cured bioactive composite, TheraCal LC, is easy to handle and fast-setting. But poor water absorption restricted its bioactivity when applied in direct pulp capping (DPC). Enhancing the water absorption of resin-based bioactive materials may be key to optimizing biomineralization procedure of light-cured bioactive materials. We constructed a hygroscopic, light-cured bioactive composite made up of bioactive glass (BG), poly (ethylene glycol) (PEG) and resin in this study. BG was encapsulated into a porogen (i.e. PEG) and mixed into resin matrix. Inductively coupled plasma showed that light-cured BG (LC-BG) exhibited faster ion release and more ion exchange than TheraCal LC did. The formation of macropores and hydroxyapatite crystal coatings on the BG microparticles was observed using scanning electron microscopy. The shear bond strength between the resin and LC-BG group did not significantly differ from the TheraCal LC group. CCK-8 assay showed that the LC-BG extract was nontoxic. Real-time polymerase chain reaction revealed that LC-BG upregulated odontogenic gene expression in human dental pulp cells. DPC assay proved that the LC-BG group exhibited no significant difference in dentin tubule formation (<i>P</i> = 0.659) or odontoblast-like cell layer formation (<i>P</i> = 0.155) from the TheraCal LC group, but exhibited significantly better integrity of the calcified bridge than the TheraCal LC group (<i>P </i>=<i> </i>0.039); more DSPP-positive and DMP-1-positive cells were detected in the LC-BG group than in the TheraCal LC group. Although no significant difference in pulpal inflammatory cell infiltration was observed between the LC-BG group and the TheraCal LC group (<i>P</i> = 0.476), fewer interleukin 1β-positive and tumor necrosis factor α-positive cells were detected in the LC-BG group than in the TheraCal LC group. In conclusion, the newly developed hygroscopic LC-BG composite showed better bioactivity and odontogenic differentiation than the TheraCal LC did <i>in vitro</i> and induced better integrity of the calcified bridge than the TheraCal LC did <i>in vivo</i>.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shukun He, Ruonan Hu, Xuan Yao, Jing Cui, Huimin Liu, Min Zhu, Liangju Ning
{"title":"The effects of heat and hydrogen peroxide treatment on the osteoinductivity of demineralized cortical bone: a potential method for preparing tendon/ligament repair scaffolds.","authors":"Shukun He, Ruonan Hu, Xuan Yao, Jing Cui, Huimin Liu, Min Zhu, Liangju Ning","doi":"10.1093/rb/rbae116","DOIUrl":"https://doi.org/10.1093/rb/rbae116","url":null,"abstract":"<p><p>Recent studies have indicated that demineralized cortical bone (DCB) may be used to repair tendons and ligaments, such as the patellar tendon and anterior cruciate ligament (ACL). Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) has been shown to reduce the osteoinductivity of DCB, and heat treatment may also decrease the osteoinductivity of DCB. The purpose of this study was (i) to determine whether heat treatment reduces the osteoinductivity of DCB and (ii) to compare the effectiveness of heat treatment and H<sub>2</sub>O<sub>2</sub> treatment on BMP-2 inactivation. DCB was prepared by immersion in 0.6 N hydrochloric acid, and DCB-H and DCB-HO were prepared by heat treatment (70°C for 8 h) and H<sub>2</sub>O<sub>2</sub> treatment (3% H<sub>2</sub>O<sub>2</sub> for 8 h), respectively. The surface topographies, elemental distributions and histological structures of the scaffolds were observed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and histological staining. The viability and osteogenic differentiation of TDSCs cultured on the scaffolds were evaluated <i>via</i> live/dead cell staining and Cell Counting Kit-8 (CCK-8) testing, real-time polymerase chain reaction (RT-PCR) and western bolt (WB) analysis, alkaline phosphatase activity (ALP) and alizarin red S (ARS) staining. The intramuscular implantation of the scaffolds in rats was also used to evaluate the effect of heat treatment and H<sub>2</sub>O<sub>2</sub> treatment on the osteoinductivity of DCB. Our results demonstrated that both treatments removed BMP-2 and osteocalcin (OCN) within the DCB and that DCB-H and DCB-HO had good cytocompatibility and reduced the osteogenic differentiation of TDSCs. Moreover, the <i>in vivo</i> results indicated that the DCB-H and DCB-HO groups had smaller areas of osteoid formation than did the DCB group, and the DCB-HO group had the smallest area among the three groups. Our study demonstrated that heat treatment could reduce the osteoinductivity of DCB, and that H<sub>2</sub>O<sub>2</sub> treatment was more effective than heat treatment.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qing Huang, Yang Jiang, Yang Cao, Yunchuan Ding, Jinghui Cai, Tingqian Yang, Xin Zhou, Qiang Wu, Danyang Li, Qingyu Liu, Fangping Li
{"title":"Bone-targeting engineered milk-derived extracellular vesicles for MRI-assisted therapy of osteoporosis.","authors":"Qing Huang, Yang Jiang, Yang Cao, Yunchuan Ding, Jinghui Cai, Tingqian Yang, Xin Zhou, Qiang Wu, Danyang Li, Qingyu Liu, Fangping Li","doi":"10.1093/rb/rbae112","DOIUrl":"https://doi.org/10.1093/rb/rbae112","url":null,"abstract":"<p><p>The imbalance between osteoblasts and osteoclasts is the cause of osteoporosis. Milk-derived extracellular vesicles (mEVs), excellent drug delivery nanocarriers, can promote bone formation and inhibit bone resorption. In this study, we conjugated bone-targeting peptide (AspSerSer, DSS)<sub>6</sub> to mEVs by click chemistry and then loaded with SRT2104, a SIRT1 (silent mating-type information regulation 2 homolog 1) agonist that was proofed to help reduce bone loss. The engineered (DSS)<sub>6</sub>-mEV-SRT2104 had the intrinsic anti-osteoporosis function of mEVs and SRT2104 to reverse the imbalance in bone homeostasis by simultaneously regulating osteogenesis and osteoclastogenesis. Furthermore, we labelled mEVs with MnB nanoparticles that can be used for the <i>in vivo</i> magnetic resonance imaging (MRI) visualization. The obtained nanocomposites significantly prevented bone loss in osteoporosis mice and increased bone mineral density, exhibiting superior bone accumulation under MRI. We believe the proposed (DSS)<sub>6</sub>-mEV-SRT2104/MnB provides a novel paradigm for osteoporosis treatment and monitoring.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mi Chen, Yidan Wang, Pingyun Yuan, Lan Wang, Xiaocheng Li, Bo Lei
{"title":"Multifunctional bioactive glass nanoparticles: surface-interface decoration and biomedical applications.","authors":"Mi Chen, Yidan Wang, Pingyun Yuan, Lan Wang, Xiaocheng Li, Bo Lei","doi":"10.1093/rb/rbae110","DOIUrl":"https://doi.org/10.1093/rb/rbae110","url":null,"abstract":"<p><p>Developing bioactive materials with multifunctional properties is crucial for enhancing their biomedical applications in regenerative medicine. Bioactive glass nanoparticle (BGN) is a new generation of biomaterials that demonstrate high biocompatibility and tissue-inducing capacity. However, the hard nanoparticle surface and single surface property limited their wide biomedical applications. In recent years, the surface functional strategy has been employed to decorate the BGN and improve its biomedical applications in bone tissue repair, bioimaging, tumor therapy and wound repair. This review summarizes the progress of surface-interface design strategy, customized multifunctional properties and biomedical applications in detail. We also discussed the current challenges and further development of multifunctional BGN to meet the requirements of various biomedical applications.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineered liver-derived decellularized extracellular matrix-based three-dimensional tumor constructs for enhanced drug screening efficiency.","authors":"Shengchang Luo, Qingqing Wang, Miaoting Li, Peiyao Xu, Yicheng Wang, Ying Wang, Ranjith Kumar Kankala, Shibin Wang, Aizheng Chen","doi":"10.1093/rb/rbae113","DOIUrl":"10.1093/rb/rbae113","url":null,"abstract":"<p><p>The decellularized extracellular matrix (dECM) has emerged as an effective medium for replicating the <i>in vivo</i>-like conditions of the tumor microenvironment (TME), thus enhancing the screening accuracy of chemotherapeutic agents. However, recent dECM-based tumor models have exhibited challenges such as uncontrollable morphology and diminished cell viability, hindering the precise evaluation of chemotherapeutic efficacy. Herein, we utilized a tailor-made microfluidic approach to encapsulate dECM from porcine liver in highly poly(lactic-<i>co</i>-glycolic acid) (PLGA) porous microspheres (dECM-PLGA PMs) to engineer a three-dimensional (3D) tumor model. These dECM-PLGA PMs-based microtumors exhibited significant promotion of hepatoma carcinoma cells (HepG2) proliferation compared to PLGA PMs alone, since the infusion of extracellular matrix (ECM) microfibers and biomolecular constituents within the PMs. Proteomic analysis of the dECM further revealed the potential effects of these bioactive fragments embedded in the PMs. Notably, dECM-PLGA PMs-based microtissues effectively replicated the drug resistance traits of tumors, showing pronounced disparities in half-maximal inhibitory concentration (IC<sub>50</sub>) values, which could correspond with certain aspects of the TME. Collectively, these dECM-PLGA PMs substantially surmounted the prevalent challenges of unregulated microstructure and suboptimal cell viability in conventional 3D tumor models. They also offer a sustainable and scalable platform for drug testing, holding promise for future pharmaceutical evaluations.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comparative study on the effects of biodegradable high-purity magnesium screw and polymer screw for fixation in epiphyseal trabecular bone.","authors":"Liang Chang, Ying Luo, Weirong Li, Fangfei Liu, Jiaxin Guo, Bingyang Dai, Wenxue Tong, Ling Qin, Jiali Wang, Jiankun Xu","doi":"10.1093/rb/rbae095","DOIUrl":"https://doi.org/10.1093/rb/rbae095","url":null,"abstract":"<p><p>With mechanical strength close to cortical bone, biodegradable and osteopromotive properties, magnesium (Mg)-based implants are promising biomaterials for orthopedic applications. However, during the degradation of such implants, there are still concerns on the potential adverse effects such as formation of cavities, osteolytic phenomena and chronic inflammation. Therefore, to transform Mg-based implants into clinical practice, the present study evaluated the local effects of high-purity Mg screws (HP-Mg, 99.99 wt%) by comparing with clinically approved polylactic acid (PLA) screws in epiphyseal trabecular bone of rabbits. After implantation of screws at the rabbit distal femur, bone microstructural, histomorphometric and biomechanical properties were measured at various time points (weeks 4, 8 and 16) using micro-CT, histology and histomorphometry, micro-indentation and scanning electron microscope. HP-Mg screws promoted peri-implant bone ingrowth with higher bone mass (BV/TV at week 4: 0.189 ± 0.022 in PLA group versus 0.313 ± 0.053 in Mg group), higher biomechanical properties (hardness at week 4: 35.045 ± 1.000 HV in PLA group versus 51.975 ± 2.565 HV in Mg group), more mature osteocyte LCN architecture, accelerated bone remodeling process and alleviated immunoreactive score (IRS of Ram11 at week 4: 5.8 ± 0.712 in PLA group versus 3.75 ± 0.866 in Mg group) as compared to PLA screws. Furthermore, we conducted finite element analysis to validate the superiority of HP-Mg screws as orthopedic implants by demonstrating reduced stress concentration and uniform stress distribution around the bone tunnel, which led to lower risks of trabecular microfractures. In conclusion, HP-Mg screws demonstrated greater osteogenic bioactivity and limited inflammatory response compared to PLA screws in the epiphyseal trabecular bone of rabbits. Our findings have paved a promising way for the clinical application of Mg-based implants.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taishan Liu, Jiayun Hao, Huan Lei, Yanru Chen, Lin Liu, Liping Jia, Juan Gu, Huaping Kang, Jingjing Shi, Jing He, Yangbin Song, Yuqi Tang, Daidi Fan
{"title":"Recombinant collagen for the repair of skin wounds and photo-aging damage.","authors":"Taishan Liu, Jiayun Hao, Huan Lei, Yanru Chen, Lin Liu, Liping Jia, Juan Gu, Huaping Kang, Jingjing Shi, Jing He, Yangbin Song, Yuqi Tang, Daidi Fan","doi":"10.1093/rb/rbae108","DOIUrl":"https://doi.org/10.1093/rb/rbae108","url":null,"abstract":"<p><p>The skin, being the body's primary defense mechanism, is susceptible to various injuries such as epidermal wounds, natural aging, and ultraviolet-induced damage. As a result, there is growing interest in researching skin repair methods. Traditional animal-derived collagen, widely available on the market, poses risks due to its immunogenicity and potential for viral contamination. In contrast, recombinant collagen sourced from human genes offers a safer alternative. To investigate the potential of human recombinant collagen in skin repair, our research team applied two types, type I human collagen (Col I) and CF-1552(I), to two different skin injury models: a wound-healing model and a photo-aging model. Our findings indicate that both Col I and CF-1552(I) effectively enhance wound healing and repair skin damaged by ultraviolet exposure. Notably, CF-1552(I) showed effects comparable to Col I in promoting cell proliferation in the wound-healing model and increasing malondialdehyde content in the photo-aging model, suggesting that CF-1552(I) may offer greater potential for skin repair compared to the larger Col I molecule.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142352791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}