表面形态和空气对哺乳动物细胞粘附到特殊湿润表面的影响。

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Regenerative Biomaterials Pub Date : 2025-04-01 eCollection Date: 2025-01-01 DOI:10.1093/rb/rbaf021
Zhiwei Chen, Yun Yang, Shaohua Xu, Zhenyu Shen, Yijian Tang, Yisheng Lin, Qiaoling Huang
{"title":"表面形态和空气对哺乳动物细胞粘附到特殊湿润表面的影响。","authors":"Zhiwei Chen, Yun Yang, Shaohua Xu, Zhenyu Shen, Yijian Tang, Yisheng Lin, Qiaoling Huang","doi":"10.1093/rb/rbaf021","DOIUrl":null,"url":null,"abstract":"<p><p>Materials with special wettability have broad biomedical applications, including the control of mammalian cell adhesion and inhibiting biofilm formation. However, limited understanding of mammalian cellular responses to superhydrophobic materials with trapped air restricts their clinical applications. In this study, we fabricated materials with varied nanostructures and wettability, and systematically compared short-term mammalian cellular responses in the presence and absence of trapped air. Our results show that small nanostructures generate small, often invisible air bubbles at the solid-liquid interface when in contact with mammalian cell suspensions. In the presence of these small bubbles, the number of adhered cells was comparable to both the same sample without trapped air and its hydrophilic counterpart, contradicting the intuitive expectations that trapped air would reduce cell adhesion. In contrast, larger nanostructures resulted in visible, hundred-micron-sized air bubbles, which significantly inhibited cell adhesion. This effect was evident when comparing the same superhydrophobic sample with and without trapped air, as well as against hydrophilic counterparts with the same morphology. Further tracking of large air bubbles on the hydrophobic materials revealed that no cells adhered to the areas occupied by hundred-micron-sized air bubbles, while more cells accumulated at the solid-liquid-gas triple line. Hence, this work deepens the understanding of cellular responses to superhydrophobic materials, revealing that material structure size influences the size of trapped air and subsequently dominates cell adhesion.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbaf021"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12017620/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dimensional effects of surface morphology and trapped air on mammalian cell adhesion to special wetting surfaces.\",\"authors\":\"Zhiwei Chen, Yun Yang, Shaohua Xu, Zhenyu Shen, Yijian Tang, Yisheng Lin, Qiaoling Huang\",\"doi\":\"10.1093/rb/rbaf021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Materials with special wettability have broad biomedical applications, including the control of mammalian cell adhesion and inhibiting biofilm formation. However, limited understanding of mammalian cellular responses to superhydrophobic materials with trapped air restricts their clinical applications. In this study, we fabricated materials with varied nanostructures and wettability, and systematically compared short-term mammalian cellular responses in the presence and absence of trapped air. Our results show that small nanostructures generate small, often invisible air bubbles at the solid-liquid interface when in contact with mammalian cell suspensions. In the presence of these small bubbles, the number of adhered cells was comparable to both the same sample without trapped air and its hydrophilic counterpart, contradicting the intuitive expectations that trapped air would reduce cell adhesion. In contrast, larger nanostructures resulted in visible, hundred-micron-sized air bubbles, which significantly inhibited cell adhesion. This effect was evident when comparing the same superhydrophobic sample with and without trapped air, as well as against hydrophilic counterparts with the same morphology. Further tracking of large air bubbles on the hydrophobic materials revealed that no cells adhered to the areas occupied by hundred-micron-sized air bubbles, while more cells accumulated at the solid-liquid-gas triple line. Hence, this work deepens the understanding of cellular responses to superhydrophobic materials, revealing that material structure size influences the size of trapped air and subsequently dominates cell adhesion.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"12 \",\"pages\":\"rbaf021\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12017620/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbaf021\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbaf021","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

具有特殊润湿性的材料具有广泛的生物医学应用,包括控制哺乳动物细胞粘附和抑制生物膜的形成。然而,对哺乳动物细胞对超疏水材料的反应的有限理解限制了它们的临床应用。在这项研究中,我们制造了具有不同纳米结构和润湿性的材料,并系统地比较了哺乳动物细胞在有和没有捕获空气的情况下的短期反应。我们的研究结果表明,当与哺乳动物细胞悬浮液接触时,小纳米结构在固液界面产生小的、通常不可见的气泡。在这些小气泡存在的情况下,粘附细胞的数量与没有捕获空气的样品和亲水的样品相当,这与直观的期望相矛盾,即捕获的空气会减少细胞粘附。相比之下,更大的纳米结构导致可见的,百微米大小的气泡,这显着抑制细胞粘附。当比较相同的超疏水样品有和没有捕获空气时,以及与具有相同形态的亲水样品相比,这种效应是明显的。对疏水材料上的大气泡的进一步跟踪表明,在百微米大小的气泡所占据的区域没有细胞粘附,而更多的细胞积聚在固液气三线处。因此,这项工作加深了对细胞对超疏水材料反应的理解,揭示了材料结构尺寸影响捕获空气的大小,并随后主导细胞粘附。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimensional effects of surface morphology and trapped air on mammalian cell adhesion to special wetting surfaces.

Materials with special wettability have broad biomedical applications, including the control of mammalian cell adhesion and inhibiting biofilm formation. However, limited understanding of mammalian cellular responses to superhydrophobic materials with trapped air restricts their clinical applications. In this study, we fabricated materials with varied nanostructures and wettability, and systematically compared short-term mammalian cellular responses in the presence and absence of trapped air. Our results show that small nanostructures generate small, often invisible air bubbles at the solid-liquid interface when in contact with mammalian cell suspensions. In the presence of these small bubbles, the number of adhered cells was comparable to both the same sample without trapped air and its hydrophilic counterpart, contradicting the intuitive expectations that trapped air would reduce cell adhesion. In contrast, larger nanostructures resulted in visible, hundred-micron-sized air bubbles, which significantly inhibited cell adhesion. This effect was evident when comparing the same superhydrophobic sample with and without trapped air, as well as against hydrophilic counterparts with the same morphology. Further tracking of large air bubbles on the hydrophobic materials revealed that no cells adhered to the areas occupied by hundred-micron-sized air bubbles, while more cells accumulated at the solid-liquid-gas triple line. Hence, this work deepens the understanding of cellular responses to superhydrophobic materials, revealing that material structure size influences the size of trapped air and subsequently dominates cell adhesion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信