{"title":"多肽水凝胶培养诱导人多能干细胞向视网膜色素上皮细胞分化。","authors":"Jun Liu, Qian Liu, Minmei Guo, Chengyu Jiang, Jianyang Chen, Ting Wang, Tzu-Cheng Sung, Shih-Jie Chou, Shih-Hwa Chiou, Guoping Fan, Akon Higuchi","doi":"10.1093/rb/rbaf035","DOIUrl":null,"url":null,"abstract":"<p><p>A variety of novel peptide-grafted hydrogels, of which peptides were derived from vitronectin (PQVTRGDVFTMP) or the laminin β4 chain (PMQKMRGDVFSP), were prepared in this study. The peptide-grafted hydrogels promoted the adhesion, proliferation and colony formation of hiPSCs and maintained their pluripotency up to passage 5 under xeno-free conditions. We successfully generated RPE cells from hiPSCs using one of the most suitable xeno-free peptide-grafted hydrogels, KVN2CK (KGCGGKGG-PQVTRGDVFTMP), which was derived from vitronectin, and confirmed the effect of these hiPSC-derived RPE cells in a rat retinal degeneration model (Royal College of Surgeons (RCS) rats) via subretinal transplantation, when we investigated functional improvements in vision in RCS rats after the transplantation of hiPSC-derived RPE cells. Our novel peptide-grafted hydrogels provided a safe and robust platform for generating single-layer hiPSC-derived RPE cells under xeno-free conditions, which indicates the potential of these hydrogels for stem cell therapy for retinal degenerative diseases in the future.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbaf035"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098265/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differentiation of human induced pluripotent stem cells into retinal pigment epithelium cells during culture on peptide-grafted hydrogels.\",\"authors\":\"Jun Liu, Qian Liu, Minmei Guo, Chengyu Jiang, Jianyang Chen, Ting Wang, Tzu-Cheng Sung, Shih-Jie Chou, Shih-Hwa Chiou, Guoping Fan, Akon Higuchi\",\"doi\":\"10.1093/rb/rbaf035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A variety of novel peptide-grafted hydrogels, of which peptides were derived from vitronectin (PQVTRGDVFTMP) or the laminin β4 chain (PMQKMRGDVFSP), were prepared in this study. The peptide-grafted hydrogels promoted the adhesion, proliferation and colony formation of hiPSCs and maintained their pluripotency up to passage 5 under xeno-free conditions. We successfully generated RPE cells from hiPSCs using one of the most suitable xeno-free peptide-grafted hydrogels, KVN2CK (KGCGGKGG-PQVTRGDVFTMP), which was derived from vitronectin, and confirmed the effect of these hiPSC-derived RPE cells in a rat retinal degeneration model (Royal College of Surgeons (RCS) rats) via subretinal transplantation, when we investigated functional improvements in vision in RCS rats after the transplantation of hiPSC-derived RPE cells. Our novel peptide-grafted hydrogels provided a safe and robust platform for generating single-layer hiPSC-derived RPE cells under xeno-free conditions, which indicates the potential of these hydrogels for stem cell therapy for retinal degenerative diseases in the future.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"12 \",\"pages\":\"rbaf035\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098265/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbaf035\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbaf035","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Differentiation of human induced pluripotent stem cells into retinal pigment epithelium cells during culture on peptide-grafted hydrogels.
A variety of novel peptide-grafted hydrogels, of which peptides were derived from vitronectin (PQVTRGDVFTMP) or the laminin β4 chain (PMQKMRGDVFSP), were prepared in this study. The peptide-grafted hydrogels promoted the adhesion, proliferation and colony formation of hiPSCs and maintained their pluripotency up to passage 5 under xeno-free conditions. We successfully generated RPE cells from hiPSCs using one of the most suitable xeno-free peptide-grafted hydrogels, KVN2CK (KGCGGKGG-PQVTRGDVFTMP), which was derived from vitronectin, and confirmed the effect of these hiPSC-derived RPE cells in a rat retinal degeneration model (Royal College of Surgeons (RCS) rats) via subretinal transplantation, when we investigated functional improvements in vision in RCS rats after the transplantation of hiPSC-derived RPE cells. Our novel peptide-grafted hydrogels provided a safe and robust platform for generating single-layer hiPSC-derived RPE cells under xeno-free conditions, which indicates the potential of these hydrogels for stem cell therapy for retinal degenerative diseases in the future.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.