Progress in Neurobiology最新文献

筛选
英文 中文
Atypical connectome topography and signal flow in temporal lobe epilepsy 颞叶癫痫的非典型连接组拓扑和信号流
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-04-10 DOI: 10.1016/j.pneurobio.2024.102604
Ke Xie , Jessica Royer , Sara Larivière , Raul Rodriguez-Cruces , Stefan Frässle , Donna Gift Cabalo , Alexander Ngo , Jordan DeKraker , Hans Auer , Shahin Tavakol , Yifei Weng , Chifaou Abdallah , Thaera Arafat , Linda Horwood , Birgit Frauscher , Lorenzo Caciagli , Andrea Bernasconi , Neda Bernasconi , Zhiqiang Zhang , Luis Concha , Boris C. Bernhardt
{"title":"Atypical connectome topography and signal flow in temporal lobe epilepsy","authors":"Ke Xie ,&nbsp;Jessica Royer ,&nbsp;Sara Larivière ,&nbsp;Raul Rodriguez-Cruces ,&nbsp;Stefan Frässle ,&nbsp;Donna Gift Cabalo ,&nbsp;Alexander Ngo ,&nbsp;Jordan DeKraker ,&nbsp;Hans Auer ,&nbsp;Shahin Tavakol ,&nbsp;Yifei Weng ,&nbsp;Chifaou Abdallah ,&nbsp;Thaera Arafat ,&nbsp;Linda Horwood ,&nbsp;Birgit Frauscher ,&nbsp;Lorenzo Caciagli ,&nbsp;Andrea Bernasconi ,&nbsp;Neda Bernasconi ,&nbsp;Zhiqiang Zhang ,&nbsp;Luis Concha ,&nbsp;Boris C. Bernhardt","doi":"10.1016/j.pneurobio.2024.102604","DOIUrl":"https://doi.org/10.1016/j.pneurobio.2024.102604","url":null,"abstract":"<div><p>Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"236 ","pages":"Article 102604"},"PeriodicalIF":6.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140622261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The STRAT-PARK cohort: A personalized initiative to stratify Parkinson’s disease STRAT-PARK 队列:帕金森病分层的个性化倡议
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-04-10 DOI: 10.1016/j.pneurobio.2024.102603
Kjersti Eline Stige , Simon Ulvenes Kverneng , Soumya Sharma , Geir-Olve Skeie , Erika Sheard , Mona Søgnen , Solveig Af Geijerstam , Therese Vetås , Anne Grete Wahlvåg , Haakon Berven , Sagar Buch , David Reese , Dina Babiker , Yekta Mahdi , Trevor Wade , Gala Prado Miranda , Jacky Ganguly , Yokhesh Krishnasamy Tamilselvam , Jia Ren Chai , Saurabh Bansal , Charalampos Tzoulis
{"title":"The STRAT-PARK cohort: A personalized initiative to stratify Parkinson’s disease","authors":"Kjersti Eline Stige ,&nbsp;Simon Ulvenes Kverneng ,&nbsp;Soumya Sharma ,&nbsp;Geir-Olve Skeie ,&nbsp;Erika Sheard ,&nbsp;Mona Søgnen ,&nbsp;Solveig Af Geijerstam ,&nbsp;Therese Vetås ,&nbsp;Anne Grete Wahlvåg ,&nbsp;Haakon Berven ,&nbsp;Sagar Buch ,&nbsp;David Reese ,&nbsp;Dina Babiker ,&nbsp;Yekta Mahdi ,&nbsp;Trevor Wade ,&nbsp;Gala Prado Miranda ,&nbsp;Jacky Ganguly ,&nbsp;Yokhesh Krishnasamy Tamilselvam ,&nbsp;Jia Ren Chai ,&nbsp;Saurabh Bansal ,&nbsp;Charalampos Tzoulis","doi":"10.1016/j.pneurobio.2024.102603","DOIUrl":"https://doi.org/10.1016/j.pneurobio.2024.102603","url":null,"abstract":"<div><p>The STRAT-PARK initiative aims to provide a platform for stratifying Parkinson’s disease (PD) into biological subtypes, using a bottom-up, multidisciplinary biomarker-based and data-driven approach. PD is a heterogeneous entity, exhibiting high interindividual clinicopathological variability. This diversity suggests that PD may encompass multiple distinct biological entities, each driven by different molecular mechanisms. Molecular stratification and identification of disease subtypes is therefore a key priority for understanding and treating PD. STRAT-PARK is a multi-center longitudinal cohort aiming to recruit a total of 2000 individuals with PD and neurologically healthy controls from Norway and Canada, for the purpose of identifying molecular disease subtypes. Clinical assessment is performed annually, whereas biosampling, imaging, and digital and neurophysiological phenotyping occur every second year. The unique feature of STRAT-PARK is the diversity of collected biological material, including muscle biopsies and platelets, tissues particularly useful for mitochondrial biomarker research. Recruitment rate is ∼150 participants per year. By March 2023, 252 participants were included, comprising 204 cases and 48 controls. STRAT-PARK is a powerful stratification initiative anticipated to become a global research resource, contributing to personalized care in PD.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"236 ","pages":"Article 102603"},"PeriodicalIF":6.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030100822400039X/pdfft?md5=630f3f1dd52d384d33d0134b2a4afa3b&pid=1-s2.0-S030100822400039X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140638313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed selectivity in monkey anterior intraparietal area during visual and motor processes 猴子前顶内区在视觉和运动过程中的混合选择性
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-04-10 DOI: 10.1016/j.pneurobio.2024.102611
Monica Maranesi, Marco Lanzilotto, Edoardo Arcuri, Luca Bonini
{"title":"Mixed selectivity in monkey anterior intraparietal area during visual and motor processes","authors":"Monica Maranesi,&nbsp;Marco Lanzilotto,&nbsp;Edoardo Arcuri,&nbsp;Luca Bonini","doi":"10.1016/j.pneurobio.2024.102611","DOIUrl":"https://doi.org/10.1016/j.pneurobio.2024.102611","url":null,"abstract":"<div><p>Classical studies suggest that the anterior intraparietal area (AIP) contributes to the encoding of specific information such as objects and actions of self and others, through a variety of neuronal classes, such as canonical, motor and mirror neurons. However, these studies typically focused on a single variable, leaving it unclear whether distinct sets of AIP neurons encode a single or multiple sources of information and how multimodal coding emerges. Here, we chronically recorded monkey AIP neurons in a variety of tasks and conditions classically employed in separate experiments. Most cells exhibited mixed selectivity for observed objects, executed actions, and observed actions, enhanced when this information came from the monkey’s peripersonal working space. In contrast with the classical view, our findings indicate that multimodal coding emerges in AIP from partially-mixed selectivity of individual neurons for a variety of information relevant for planning actions directed to both physical objects and other subjects.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"236 ","pages":"Article 102611"},"PeriodicalIF":6.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000479/pdfft?md5=595c2691d9c5fbf031e55a7f08f39ced&pid=1-s2.0-S0301008224000479-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140650146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lateralization of dorsal fiber tract targeting Broca’s area concurs with language skills during development 以布罗卡区为目标的背侧纤维束的侧化与语言技能的发育过程有关
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-04-04 DOI: 10.1016/j.pneurobio.2024.102602
Cornelius Eichner , Philipp Berger , Cheslie C. Klein , Angela D. Friederici
{"title":"Lateralization of dorsal fiber tract targeting Broca’s area concurs with language skills during development","authors":"Cornelius Eichner ,&nbsp;Philipp Berger ,&nbsp;Cheslie C. Klein ,&nbsp;Angela D. Friederici","doi":"10.1016/j.pneurobio.2024.102602","DOIUrl":"https://doi.org/10.1016/j.pneurobio.2024.102602","url":null,"abstract":"<div><p>Language is bounded to the left hemisphere in the adult brain and the functional lateralization can already be observed early during development. Here we investigate whether this is paralleled by a lateralization of the white matter structural language network. We analyze the strength and microstructural properties of language-related fiber tracts connecting temporal and frontal cortices with a separation of two dorsal tracts, one targeting the posterior Broca’s area (BA44) and one targeting the precentral gyrus (BA6). In a large sample of young children (3–6 years), we demonstrate that, in contrast to the BA6-targeting tract, the microstructural asymmetry of the BA44-targeting fiber tract significantly correlates locally with different aspects of development. While the asymmetry in its anterior segment reflects age, the asymmetry in its posterior segment is associated with the children’s language skills. These findings demonstrate a fine-grained structure-to-function mapping in the lateralized network and go beyond our current view of language-related human brain maturation.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"236 ","pages":"Article 102602"},"PeriodicalIF":6.7,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000388/pdfft?md5=fd3832405d43fae881959fdf5f1be647&pid=1-s2.0-S0301008224000388-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140540744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Memory circuits in dementia: The engram, hippocampal neurogenesis and Alzheimer’s disease 痴呆症的记忆回路:刻痕、海马神经发生和阿尔茨海默病
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-04-01 DOI: 10.1016/j.pneurobio.2024.102601
Orly Lazarov, Muskan Gupta, Pavan Kumar, Zachery Morrissey, Trongha Phan
{"title":"Memory circuits in dementia: The engram, hippocampal neurogenesis and Alzheimer’s disease","authors":"Orly Lazarov,&nbsp;Muskan Gupta,&nbsp;Pavan Kumar,&nbsp;Zachery Morrissey,&nbsp;Trongha Phan","doi":"10.1016/j.pneurobio.2024.102601","DOIUrl":"10.1016/j.pneurobio.2024.102601","url":null,"abstract":"<div><p>Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer’s disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, <em>in vivo</em> while animals engage in tasks, such as calcium imaging. <em>In vivo</em> calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"236 ","pages":"Article 102601"},"PeriodicalIF":6.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000376/pdfft?md5=bbd721eb949c6877bee74e2d0da462e3&pid=1-s2.0-S0301008224000376-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140356409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optogenetic and chemogenetic approaches for modeling neurological disorders in vivo 用于体内神经系统疾病建模的光遗传学和化学遗传学方法。
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-03-26 DOI: 10.1016/j.pneurobio.2024.102600
Viktoriya G. Krut’ , Andrei L. Kalinichenko , Dmitry I. Maltsev , David Jappy , Evgeny K. Shevchenko , Oleg V. Podgorny , Vsevolod V. Belousov
{"title":"Optogenetic and chemogenetic approaches for modeling neurological disorders in vivo","authors":"Viktoriya G. Krut’ ,&nbsp;Andrei L. Kalinichenko ,&nbsp;Dmitry I. Maltsev ,&nbsp;David Jappy ,&nbsp;Evgeny K. Shevchenko ,&nbsp;Oleg V. Podgorny ,&nbsp;Vsevolod V. Belousov","doi":"10.1016/j.pneurobio.2024.102600","DOIUrl":"10.1016/j.pneurobio.2024.102600","url":null,"abstract":"<div><p>Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions. In recent years, novel animal models recapitulating neuropathologies in humans have been introduced. These animal models are based on synthetic biology approaches: opto- and chemogenetics. In this paper, we review recent opto- and chemogenetics-based animal models of human neurological disorders. These models allow for the creation of pathological states by disrupting specific processes at the cellular level. The artificial pathological states mimic a range of human neurological disorders, such as aging-related dementia, Alzheimer’s and Parkinson’s diseases, amyotrophic lateral sclerosis, epilepsy, and ataxias. Opto- and chemogenetics provide new opportunities unavailable with other animal models of human neurological disorders. These techniques enable researchers to induce neuropathological states varying in severity and ranging from acute to chronic. We also discuss future directions for the development and application of synthetic biology approaches for modeling neurological disorders.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"235 ","pages":"Article 102600"},"PeriodicalIF":6.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissecting gene expression networks in the developing hippocampus through the lens of NEIL3 depletion 通过NEIL3缺失透镜剖析发育中海马的基因表达网络
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-03-24 DOI: 10.1016/j.pneurobio.2024.102599
Anna M. Bugaj , Nicolas Kunath , Vidar Langseth Saasen , Marion S. Fernandez-Berrocal , Ana Vankova , Pål Sætrom , Magnar Bjørås , Jing Ye
{"title":"Dissecting gene expression networks in the developing hippocampus through the lens of NEIL3 depletion","authors":"Anna M. Bugaj ,&nbsp;Nicolas Kunath ,&nbsp;Vidar Langseth Saasen ,&nbsp;Marion S. Fernandez-Berrocal ,&nbsp;Ana Vankova ,&nbsp;Pål Sætrom ,&nbsp;Magnar Bjørås ,&nbsp;Jing Ye","doi":"10.1016/j.pneurobio.2024.102599","DOIUrl":"10.1016/j.pneurobio.2024.102599","url":null,"abstract":"<div><p>Gene regulation in the hippocampus is fundamental for its development, synaptic plasticity, memory formation, and adaptability. Comparisons of gene expression among different developmental stages, distinct cell types, and specific experimental conditions have identified differentially expressed genes contributing to the organization and functionality of hippocampal circuits. The NEIL3 DNA glycosylase, one of the DNA repair enzymes, plays an important role in hippocampal maturation and neuron functionality by shaping transcription. While differential gene expression (DGE) analysis has identified key genes involved, broader gene expression patterns crucial for high-order hippocampal functions remain uncharted. By utilizing the weighted gene co-expression network analysis (WGCNA), we mapped gene expression networks in immature (p8-neonatal) and mature (3 m-adult) hippocampal circuits in wild-type and NEIL3-deficient mice. Our study unveiled intricate gene network structures underlying hippocampal maturation, delineated modules of co-expressed genes, and pinpointed highly interconnected hub genes specific to the maturity of hippocampal subregions. We investigated variations within distinct gene network modules following NEIL3 depletion, uncovering NEIL3-targeted hub genes that influence module connectivity and specificity. By integrating WGCNA with DGE, we delve deeper into the NEIL3-dependent molecular intricacies of hippocampal maturation. This study provides a comprehensive systems-level analysis for assessing the potential correlation between gene connectivity and functional connectivity within the hippocampal network, thus shaping hippocampal function throughout development.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"235 ","pages":"Article 102599"},"PeriodicalIF":6.7,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000352/pdfft?md5=f074a4b50d71eed55161043625d984cc&pid=1-s2.0-S0301008224000352-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140207480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic evoked seizures in young pre-symptomatic APP/PS1 mice induce serotonin changes and accelerate onset of Alzheimer’s disease-related neuropathology 年轻的症状前APP/PS1小鼠的慢性诱发癫痫发作会诱发血清素变化,并加速阿尔茨海默病相关神经病理学的发生。
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-03-13 DOI: 10.1016/j.pneurobio.2024.102591
Aaron del Pozo , Kevin M. Knox , Leanne M. Lehmann , Stephanie Davidson , Seongheon Leo Rho , Suman Jayadev , Melissa Barker-Haliski
{"title":"Chronic evoked seizures in young pre-symptomatic APP/PS1 mice induce serotonin changes and accelerate onset of Alzheimer’s disease-related neuropathology","authors":"Aaron del Pozo ,&nbsp;Kevin M. Knox ,&nbsp;Leanne M. Lehmann ,&nbsp;Stephanie Davidson ,&nbsp;Seongheon Leo Rho ,&nbsp;Suman Jayadev ,&nbsp;Melissa Barker-Haliski","doi":"10.1016/j.pneurobio.2024.102591","DOIUrl":"10.1016/j.pneurobio.2024.102591","url":null,"abstract":"<div><h3>Objective</h3><p>Hyperexcitability is intimately linked to Alzheimer's disease (AD) pathology, but the precise timing and contributions of neuronal hyperexcitability to disease progression is unclear. Seizure induction in rodent AD models can uncover new therapeutic targets. Further, investigator-evoked seizures can directly establish how hyperexcitability and AD-associated risk factors influence neuropathological hallmarks and disease course at presymptomatic stages.</p></div><div><h3>Methods</h3><p>Corneal kindling is a well-characterized preclinical epilepsy model that allows for precise control of seizure history to pair to subsequent behavioral assessments. 2–3-month-old APP/PS1, PSEN2-N141I, and transgenic control male and female mice were thus sham or corneal kindled for 2 weeks. Seizure-induced changes in glia, serotonin pathway proteins, and amyloid β levels in hippocampus and prefrontal cortex were quantified.</p></div><div><h3>Results</h3><p>APP/PS1 females were more susceptible to corneal kindling. However, regardless of sex, APP/PS1 mice experienced extensive seizure-induced mortality versus kindled Tg- controls. PSEN2-N141I mice were not negatively affected by corneal kindling. Mortality correlated with a marked downregulation of hippocampal tryptophan hydroxylase 2 and monoamine oxidase A protein expression versus controls; these changes were not detected in PSEN2-N141I mice. Kindled APP/PS1 mice also exhibited soluble amyloid β upregulation and glial reactivity without plaque deposition.</p></div><div><h3>Significance</h3><p>Evoked convulsive seizures and neuronal hyperexcitability in pre-symptomatic APP/PS1 mice promoted premature mortality without pathological Aβ plaque deposition, whereas PSEN2-N141I mice were unaffected. Disruptions in serotonin pathway metabolism in APP/PS1 mice was associated with increased glial reactivity without Aβ plaque deposition, demonstrating that neuronal hyperexcitability in early AD causes pathological Aβ overexpression and worsens long-term outcomes through a serotonin-related mechanism.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"235 ","pages":"Article 102591"},"PeriodicalIF":6.7,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140132428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The unconditioned fear response in vertebrates deficient in dystrophin 缺乏肌营养不良蛋白的脊椎动物的无条件恐惧反应
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-03-12 DOI: 10.1016/j.pneurobio.2024.102590
Saba Gharibi , Cyrille Vaillend , Angus Lindsay
{"title":"The unconditioned fear response in vertebrates deficient in dystrophin","authors":"Saba Gharibi ,&nbsp;Cyrille Vaillend ,&nbsp;Angus Lindsay","doi":"10.1016/j.pneurobio.2024.102590","DOIUrl":"10.1016/j.pneurobio.2024.102590","url":null,"abstract":"<div><p>Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"235 ","pages":"Article 102590"},"PeriodicalIF":6.7,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000261/pdfft?md5=8c89744ca34fc843b8fd9ccaf61922b7&pid=1-s2.0-S0301008224000261-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140125651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Contralateral delay activity and alpha lateralization reflect retinotopic and screen-centered reference frames in visual memory 对侧延迟活动和阿尔法侧化反映了视觉记忆中的视网膜参照系和屏幕中心参照系
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-03-01 DOI: 10.1016/j.pneurobio.2024.102576
Wanja A. Mössing , Svea C.Y. Schroeder , Anna Lena Biel , Niko A. Busch
{"title":"Contralateral delay activity and alpha lateralization reflect retinotopic and screen-centered reference frames in visual memory","authors":"Wanja A. Mössing ,&nbsp;Svea C.Y. Schroeder ,&nbsp;Anna Lena Biel ,&nbsp;Niko A. Busch","doi":"10.1016/j.pneurobio.2024.102576","DOIUrl":"10.1016/j.pneurobio.2024.102576","url":null,"abstract":"<div><p>The visual system represents objects in a lateralized manner, with contralateral cortical hemispheres responsible for left and right visual hemifields. This organization extends to visual short-term memory (VSTM), as evidenced by electrophysiological indices of VSTM maintenance: contralateral delay activity (CDA) and alpha-band lateralization. However, it remains unclear if VSTM represents object locations in gaze-centered (retinotopic) or screen-centered (spatiotopic) coordinates, especially after eye movements. In two experiments, participants encoded the colors of target objects and made a lateral saccade during the maintenance interval, thereby shifting the object’s location on the retina. A non-lateralized probe stimulus was then presented at the new fixation for a change detection task. The CDA maintained lateralization towards the target’s original retinotopic location, unaffected by subsequent saccades, and did not invert polarity even when a saccade brought that location into the opposite hemifield. We also found conventional alpha lateralization towards the target’s location before a saccade. After a saccade, however, alpha was lateralized towards the screen center regardless of the target’s original location, even in a control condition without any memory requirements. This suggests that post-saccadic alpha-band lateralization reflects attentional processes unrelated to memory, while pre- and post-saccade CDA reflect VSTM maintenance in a retinotopic reference frame.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"234 ","pages":"Article 102576"},"PeriodicalIF":6.7,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000121/pdfft?md5=7c9a19b9f8c8e9cd6a1fdf61990aa92b&pid=1-s2.0-S0301008224000121-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139662822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信