{"title":"A theory of hippocampal function: New developments","authors":"Edmund T. Rolls , Alessandro Treves","doi":"10.1016/j.pneurobio.2024.102636","DOIUrl":"10.1016/j.pneurobio.2024.102636","url":null,"abstract":"<div><p>We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build ‘where’ spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for ‘what’ object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"238 ","pages":"Article 102636"},"PeriodicalIF":6.7,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000728/pdfft?md5=e792602997e8ebff53c4e95af5dbc3e9&pid=1-s2.0-S0301008224000728-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141228908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meiqi Niu , Lucija Rapan , Seán Froudist-Walsh , Ling Zhao , Thomas Funck , Katrin Amunts , Nicola Palomero-Gallagher
{"title":"Multimodal mapping of macaque monkey somatosensory cortex","authors":"Meiqi Niu , Lucija Rapan , Seán Froudist-Walsh , Ling Zhao , Thomas Funck , Katrin Amunts , Nicola Palomero-Gallagher","doi":"10.1016/j.pneurobio.2024.102633","DOIUrl":"10.1016/j.pneurobio.2024.102633","url":null,"abstract":"<div><p>The somatosensory cortex is a brain region responsible for receiving and processing sensory information from across the body and is structurally and functionally heterogeneous. Since the chemoarchitectonic segregation of the cerebral cortex can be revealed by transmitter receptor distribution patterns, by using a quantitative multireceptor architectonical analysis, we determined the number and extent of distinct areas of the macaque somatosensory cortex. We identified three architectonically distinct cortical entities within the primary somatosensory cortex (i.e., 3bm, 3bli, 3ble), four within the anterior parietal cortex (i.e., 3am, 3al, 1 and 2) and six subdivisions (i.e., S2l, S2m, PVl, PVm, PRl and PRm) within the lateral fissure. We provide an ultra-high resolution 3D atlas of macaque somatosensory areas in stereotaxic space, which integrates cyto- and receptor architectonic features of identified areas. Multivariate analyses of the receptor fingerprints revealed four clusters of identified areas based on the degree of (dis)similarity of their receptor architecture. Each of these clusters can be associated with distinct levels of somatosensory processing, further demonstrating that the functional segregation of cortical areas is underpinned by differences in their molecular organization.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"239 ","pages":"Article 102633"},"PeriodicalIF":6.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000698/pdfft?md5=520ea428ca44bd90fb9aa8023a2674e4&pid=1-s2.0-S0301008224000698-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141233268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinicius N. Duarte , Vicky T. Lam , Dario S. Rimicci , Katherine L. Thompson-Peer
{"title":"Calcium plays an essential role in early-stage dendrite injury detection and regeneration","authors":"Vinicius N. Duarte , Vicky T. Lam , Dario S. Rimicci , Katherine L. Thompson-Peer","doi":"10.1016/j.pneurobio.2024.102635","DOIUrl":"10.1016/j.pneurobio.2024.102635","url":null,"abstract":"<div><p>Dendrites are injured in a variety of clinical conditions such as traumatic brain and spinal cord injuries and stroke. How neurons detect injury directly to their dendrites to initiate a pro-regenerative response has not yet been thoroughly investigated. Calcium plays a critical role in the early stages of axonal injury detection and is also indispensable for regeneration of the severed axon. Here, we report cell and neurite type-specific differences in laser injury-induced elevations of intracellular calcium levels. Using a human KCNJ2 transgene, we demonstrate that hyperpolarizing neurons only at the time of injury dampens dendrite regeneration, suggesting that inhibition of injury-induced membrane depolarization (and thus early calcium influx) plays a role in detecting and responding to dendrite injury. In exploring potential downstream calcium-regulated effectors, we identify L-type voltage-gated calcium channels, inositol triphosphate signaling, and protein kinase D activity as drivers of dendrite regeneration. In conclusion, we demonstrate that dendrite injury-induced calcium elevations play a key role in the regenerative response of dendrites and begin to delineate the molecular mechanisms governing dendrite repair.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"239 ","pages":"Article 102635"},"PeriodicalIF":6.7,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000716/pdfft?md5=a0adc6d1c7949f6dab645403af92ebc7&pid=1-s2.0-S0301008224000716-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141200595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sophie T. Yount , Silu Wang , Aylet T. Allen , Lauren P. Shapiro , Laura M. Butkovich , Shannon L. Gourley
{"title":"A molecularly defined orbitofrontal cortical neuron population controls compulsive-like behavior, but not inflexible choice or habit","authors":"Sophie T. Yount , Silu Wang , Aylet T. Allen , Lauren P. Shapiro , Laura M. Butkovich , Shannon L. Gourley","doi":"10.1016/j.pneurobio.2024.102632","DOIUrl":"10.1016/j.pneurobio.2024.102632","url":null,"abstract":"<div><p>Habits are familiar behaviors triggered by cues, not outcome predictability, and are insensitive to changes in the environment. They are adaptive under many circumstances but can be considered antecedent to compulsions and intrusive thoughts that drive persistent, potentially maladaptive behavior. Whether compulsive-like and habit-like behaviors share neural substrates is still being determined. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences. We found that these mice demonstrate habitual response biases and compulsive-like grooming behavior that was reversible by fluoxetine and ketamine. They also suffer dendritic spine attrition on excitatory neurons in the orbitofrontal cortex (OFC). Nevertheless, synaptic melanocortin 4 receptor (MC4R), a factor implicated in compulsive behavior, is preserved, leading to the hypothesis that <em>Mc4r</em>+ OFC neurons may drive aberrant behaviors. Repeated chemogenetic stimulation of <em>Mc4r+</em> OFC neurons triggered compulsive and not inflexible or habitual response biases in otherwise typical mice. Thus, <em>Mc4r</em>+ neurons within the OFC appear to drive compulsive-like behavior that is dissociable from habitual behavior. Understanding which neuron populations trigger distinct behaviors may advance efforts to mitigate harmful compulsions.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"238 ","pages":"Article 102632"},"PeriodicalIF":6.7,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth C. Heaton , Esther H. Seo , Laura M. Butkovich , Sophie T. Yount , Shannon L. Gourley
{"title":"Control of goal-directed and inflexible actions by dorsal striatal melanocortin systems, in coordination with the central nucleus of the amygdala","authors":"Elizabeth C. Heaton , Esther H. Seo , Laura M. Butkovich , Sophie T. Yount , Shannon L. Gourley","doi":"10.1016/j.pneurobio.2024.102629","DOIUrl":"10.1016/j.pneurobio.2024.102629","url":null,"abstract":"<div><p>The dorsomedial striatum (DMS) is associated with flexible goal seeking, as opposed to routinized habits. Whether local mechanisms brake this function, for instance when habits may be adaptive, is incompletely understood. We find that a sub-population of dopamine D1 receptor-containing striatal neurons express the melanocortin-4 receptor (MC4R) for α-melanocyte stimulating hormone. These neurons within the DMS are necessary and sufficient for controlling the capacity of mice to flexibly adjust actions based on the likelihood that they will be rewarded. In investigating MC4R function, we found that it suppresses immediate-early gene levels in the DMS and concurrently, flexible goal seeking. MC4R+ neurons receive input from the central nucleus of the amygdala, and behavioral experiments indicate that they are functionally integrated into an amygdalo-striatal circuit that suppresses action flexibility in favor of routine. Publicly available spatial transcriptomics datasets were analyzed for gene transcript correlates of <em>Mc4r</em> expression across the striatal subregions, revealing considerable co-variation in dorsal structures. This insight led to the discovery that the function of MC4R in the dorsolateral striatum complements that in the DMS, in this case suppressing habit-like behavior. Altogether, our findings suggest that striatal MC4R controls the capacity for goal-directed and inflexible actions alike.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"238 ","pages":"Article 102629"},"PeriodicalIF":6.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141028527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorena Armijo-Weingart , Loreto San Martin , Scarlet Gallegos , Anibal Araya , Macarena Konar-Nie , Eduardo Fernandez-Pérez , Luis G. Aguayo
{"title":"Loss of glycine receptors in the nucleus accumbens and ethanol reward in an Alzheimer´s Disease mouse model","authors":"Lorena Armijo-Weingart , Loreto San Martin , Scarlet Gallegos , Anibal Araya , Macarena Konar-Nie , Eduardo Fernandez-Pérez , Luis G. Aguayo","doi":"10.1016/j.pneurobio.2024.102616","DOIUrl":"10.1016/j.pneurobio.2024.102616","url":null,"abstract":"<div><p>Alterations in cognitive and non-cognitive cerebral functions characterize Alzheimer's disease (AD). Cortical and hippocampal impairments related to extracellular accumulation of Aβ in AD animal models have been extensively investigated. However, recent reports have also implicated intracellular Aβ in limbic regions, such as the nucleus accumbens (nAc). Accumbal neurons express high levels of inhibitory glycine receptors (GlyRs) that are allosterically modulated by ethanol and have a role in controlling its intake. In the present study, we investigated how GlyRs in the 2xTg mice (AD model) affect nAc functions and ethanol intake behavior. Using transgenic and control aged-matched litter mates, we found that the GlyRα2 subunit was significantly decreased in AD mice (6-month-old). We also examined intracellular calcium dynamics using the fluorescent calcium protein reporter GCaMP in slice photometry. We also found that the calcium signal mediated by GlyRs, but not GABA<sub>A</sub>R, was also reduced in AD neurons. Additionally, ethanol potentiation was significantly decreased in accumbal neurons in the AD mice. Finally, we performed drinking in the dark (DID) experiments and found that 2xTg mice consumed less ethanol on the last day of DID, in agreement with a lower blood ethanol concentration. 2xTg mice also showed lower sucrose consumption, indicating that overall food reward was altered. In conclusion, the data support the role of GlyRs in nAc neuron excitability and a decreased glycinergic activity in the 2xTg mice that might lead to impairment in reward processing at an early stage of the disease.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"237 ","pages":"Article 102616"},"PeriodicalIF":6.7,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140899409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel S. Stephens , Jin Park , Andrew Eagle , Jason You , Manuel Silva-Pérez , Chia-Hsuan Fu , Sumin Choi , Corey P. St. Romain , Chiho Sugimoto , Shelly A. Buffington , Yi Zheng , Mauro Costa-Mattioli , Yin Liu , A.J. Robison , Jeannie Chin
{"title":"Persistent ∆FosB expression limits recurrent seizure activity and provides neuroprotection in the dentate gyrus of APP mice","authors":"Gabriel S. Stephens , Jin Park , Andrew Eagle , Jason You , Manuel Silva-Pérez , Chia-Hsuan Fu , Sumin Choi , Corey P. St. Romain , Chiho Sugimoto , Shelly A. Buffington , Yi Zheng , Mauro Costa-Mattioli , Yin Liu , A.J. Robison , Jeannie Chin","doi":"10.1016/j.pneurobio.2024.102612","DOIUrl":"10.1016/j.pneurobio.2024.102612","url":null,"abstract":"<div><p>Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer’s disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"237 ","pages":"Article 102612"},"PeriodicalIF":6.7,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140794335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maximilian Tufvesson-Alm, Qian Zhang, Cajsa Aranäs, Sebastian Blid Sköldheden, Christian E. Edvardsson, Elisabet Jerlhag
{"title":"Decoding the influence of central LEAP2 on food intake and its effect on accumbal dopamine release","authors":"Maximilian Tufvesson-Alm, Qian Zhang, Cajsa Aranäs, Sebastian Blid Sköldheden, Christian E. Edvardsson, Elisabet Jerlhag","doi":"10.1016/j.pneurobio.2024.102615","DOIUrl":"https://doi.org/10.1016/j.pneurobio.2024.102615","url":null,"abstract":"<div><p>The gut-brain peptide ghrelin and its receptor are established as a regulator of hunger and reward-processing. However, the recently recognized ghrelin receptor inverse agonist, liver-expressed antimicrobial peptide 2 (LEAP2), is less characterized. The present study aimed to elucidate LEAP2s central effect on reward-related behaviors through feeding and its mechanism. LEAP2 was administrated centrally in mice and effectively reduced feeding and intake of palatable foods. Strikingly, LEAP2s effect on feeding was correlated to the preference of the palatable food. Further, LEAP2 reduced the rewarding memory of high preference foods, and attenuated the accumbal dopamine release associated with palatable food exposure and eating. Interestingly, LEAP2 was widely expressed in the brain, and particularly in reward-related brain areas such as the laterodorsal tegmental area (LDTg). This expression was markedly altered when allowed free access to palatable foods. Accordingly, infusion of LEAP2 into LDTg was sufficient to transiently reduce acute palatable food intake. Taken together, the present results show that central LEAP2 has a profound effect on dopaminergic reward signaling associated with food and affects several aspects of feeding. The present study highlights LEAP2s effect on reward, which may have applications for obesity and other reward-related psychiatric and neurological disorders.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"236 ","pages":"Article 102615"},"PeriodicalIF":6.7,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000510/pdfft?md5=04123e9ab2abf3d1946dbb598f752cb2&pid=1-s2.0-S0301008224000510-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140638311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Sun , Meng-Yu Tang , Dan Yang , Yan-Yi Zhang , Yi-Heng Xu , Yong Qiao , Bin Yu , Shu-Xia Cao , Hao Wang , Hui-Qian Huang , Hong Zhang , Xiao-Ming Li , Hong Lian
{"title":"C3aR in the medial prefrontal cortex modulates the susceptibility to LPS-induced depressive-like behaviors through glutamatergic neuronal excitability","authors":"Rui Sun , Meng-Yu Tang , Dan Yang , Yan-Yi Zhang , Yi-Heng Xu , Yong Qiao , Bin Yu , Shu-Xia Cao , Hao Wang , Hui-Qian Huang , Hong Zhang , Xiao-Ming Li , Hong Lian","doi":"10.1016/j.pneurobio.2024.102614","DOIUrl":"https://doi.org/10.1016/j.pneurobio.2024.102614","url":null,"abstract":"<div><p>Complement activation and prefrontal cortical dysfunction both contribute to the pathogenesis of major depressive disorder (MDD), but their interplay in MDD is unclear. We here studied the role of complement C3a receptor (C3aR) in the medial prefrontal cortex (mPFC) and its influence on depressive-like behaviors induced by systematic lipopolysaccharides (LPS) administration. C3aR knockout (KO) or intra-mPFC C3aR antagonism confers resilience, whereas C3aR expression in mPFC neurons makes KO mice susceptible to LPS-induced depressive-like behaviors. Importantly, the excitation and inhibition of mPFC neurons have opposing effects on depressive-like behaviors, aligning with increased and decreased excitability by C3aR deletion and activation in cortical neurons. In particular, inhibiting mPFC glutamatergic (mPFC<sup>Glu</sup>) neurons, the main neuronal subpopulation expresses C3aR, induces depressive-like behaviors in saline-treated WT and KO mice, but not in LPS-treated KO mice. Compared to hypoexcitable mPFC<sup>Glu</sup> neurons in LPS-treated WT mice, C3aR-null mPFC<sup>Glu</sup> neurons display hyperexcitability upon LPS treatment, and enhanced excitation of mPFC<sup>Glu</sup> neurons is anti-depressant, suggesting a protective role of C3aR deficiency in these circumstances. In conclusion, C3aR modulates susceptibility to LPS-induced depressive-like behaviors through mPFC<sup>Glu</sup> neuronal excitability. This study identifies C3aR as a pivotal intersection of complement activation, mPFC dysfunction, and depression and a promising therapeutic target for MDD.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"236 ","pages":"Article 102614"},"PeriodicalIF":6.7,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140645196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Prefrontal-subthalamic theta signaling mediates delayed responses during conflict processing","authors":"Jeong Woo Choi , Mahsa Malekmohammadi , Soroush Niketeghad , Katy A. Cross , Hamasa Ebadi , Amirreza Alijanpourotaghsara , Adam Aron , Ueli Rutishauser , Nader Pouratian","doi":"10.1016/j.pneurobio.2024.102613","DOIUrl":"https://doi.org/10.1016/j.pneurobio.2024.102613","url":null,"abstract":"<div><p>While medial frontal cortex (MFC) and subthalamic nucleus (STN) have been implicated in conflict monitoring and action inhibition, respectively, an integrated understanding of the spatiotemporal and spectral interaction of these nodes and how they interact with motor cortex (M1) to definitively modify motor behavior during conflict is lacking. We recorded neural signals intracranially across presupplementary motor area (preSMA), M1, STN, and globus pallidus internus (GPi), during a flanker task in 20 patients undergoing deep brain stimulation implantation surgery for Parkinson disease or dystonia. Conflict is associated with sequential and causal increases in local theta power from preSMA to STN to M1 with movement delays directly correlated with increased STN theta power, indicating preSMA is the MFC locus that monitors conflict and signals STN to implement a ‘break.’ Transmission of theta from STN-to-M1 subsequently results in a transient increase in M1-to-GPi beta flow immediately prior to movement, modulating the motor network to actuate the conflict-related action inhibition (i.e., delayed response). Action regulation during conflict relies on two distinct circuits, the conflict-related theta and movement-related beta networks, that are separated spatially, spectrally, and temporally, but which interact dynamically to mediate motor performance, highlighting complex parallel yet interacting networks regulating movement.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"236 ","pages":"Article 102613"},"PeriodicalIF":6.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}