Progress in Neurobiology最新文献

筛选
英文 中文
Naturalistic movies and encoding analysis define areal borders in marmoset third-tier visual cortex 自然电影和编码,分析狨猴第三层视觉皮层中的区域边界定义。
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-08-03 DOI: 10.1016/j.pneurobio.2024.102657
Daisuke Shimaoka , Yan Tat Wong , Marcello G.P. Rosa , Nicholas Seow Chiang Price
{"title":"Naturalistic movies and encoding analysis define areal borders in marmoset third-tier visual cortex","authors":"Daisuke Shimaoka ,&nbsp;Yan Tat Wong ,&nbsp;Marcello G.P. Rosa ,&nbsp;Nicholas Seow Chiang Price","doi":"10.1016/j.pneurobio.2024.102657","DOIUrl":"10.1016/j.pneurobio.2024.102657","url":null,"abstract":"<div><p>Accurate definition of the borders of cortical visual areas is essential for the study of neuronal processes leading to perception. However, data used for definition of areal boundaries have suffered from issues related to resolution, uniform coverage, or suitability for objective analysis, leading to ambiguity. Here, we present a novel approach that combines widefield optical imaging, presentation of naturalistic movies, and encoding model analysis, to objectively define borders in the primate extrastriate cortex. We applied this method to test conflicting hypotheses about the third-tier visual cortex, where areal boundaries have remained controversial. We demonstrate pronounced tuning preferences in the third-tier areas, and an organizational structure in which the dorsomedial area (DM) contains representations of both the upper and lower contralateral quadrants, and is located immediate anterior to V2. High-density electrophysiological recordings with a Neuropixels probe confirm these findings. Our encoding-model approach offers a powerful, objective way to disambiguate areal boundaries.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"240 ","pages":"Article 102657"},"PeriodicalIF":6.7,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000935/pdfft?md5=bc7941c87bc2ead50297eb74962e4f67&pid=1-s2.0-S0301008224000935-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A free intravesicular C-terminal of otoferlin is essential for synaptic vesicle docking and fusion at auditory inner hair cell ribbon synapses 听觉内毛细胞带状突触的突触囊泡对接和融合离不开自由的囊泡内C端奥托费林。
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-08-03 DOI: 10.1016/j.pneurobio.2024.102658
Didier Dulon , Jacques Boutet de Monvel , Baptiste Plion , Adeline Mallet , Christine Petit , Steven Condamine , Yohan Bouleau , Saaid Safieddine
{"title":"A free intravesicular C-terminal of otoferlin is essential for synaptic vesicle docking and fusion at auditory inner hair cell ribbon synapses","authors":"Didier Dulon ,&nbsp;Jacques Boutet de Monvel ,&nbsp;Baptiste Plion ,&nbsp;Adeline Mallet ,&nbsp;Christine Petit ,&nbsp;Steven Condamine ,&nbsp;Yohan Bouleau ,&nbsp;Saaid Safieddine","doi":"10.1016/j.pneurobio.2024.102658","DOIUrl":"10.1016/j.pneurobio.2024.102658","url":null,"abstract":"<div><p>Our understanding of how otoferlin, the major calcium sensor in inner hair cells (IHCs) synaptic transmission, contributes to the overall dynamics of synaptic vesicle (SV) trafficking remains limited. To address this question, we generated a knock-in mouse model expressing an otoferlin-GFP protein, where GFP was fused to its C-terminal transmembrane domain. Similar to the wild type protein, the GFP-tagged otoferlin showed normal expression and was associated with IHC SV. Surprisingly, while the heterozygote <em>Otof</em> <sup><em>+/GFP</em></sup> mice exhibited a normal hearing function, homozygote <em>Otof</em> <sup><em>GFP/GFP</em></sup> mice were profoundly deaf attributed to severe reduction in SV exocytosis. Fluorescence recovery after photobleaching revealed a markedly increased mobile fraction of the otof-GFP-associated SV in <em>Otof <sup>GFP/GFP</sup></em> IHCs. Correspondingly, 3D-electron tomographic of the ribbon synapses indicated a reduced density of SV attached to the ribbon active zone. Collectively, these results indicate that otoferlin requires a free intravesicular C-terminal end for normal SV docking and fusion.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"240 ","pages":"Article 102658"},"PeriodicalIF":6.7,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000947/pdfft?md5=61dac4df5fe8a53220a48368fcbaa2d7&pid=1-s2.0-S0301008224000947-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orientation selectivity mapping in the visual cortex 视觉皮层的方向选择性映射。
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-07-14 DOI: 10.1016/j.pneurobio.2024.102656
Mei-Lan Liu , Yi-Peng Liu , Xin-Xia Guo , Zhi-Yi Wu , Xiao-Tong Zhang , Anna Wang Roe , Jia-Ming Hu
{"title":"Orientation selectivity mapping in the visual cortex","authors":"Mei-Lan Liu ,&nbsp;Yi-Peng Liu ,&nbsp;Xin-Xia Guo ,&nbsp;Zhi-Yi Wu ,&nbsp;Xiao-Tong Zhang ,&nbsp;Anna Wang Roe ,&nbsp;Jia-Ming Hu","doi":"10.1016/j.pneurobio.2024.102656","DOIUrl":"10.1016/j.pneurobio.2024.102656","url":null,"abstract":"<div><p>The orientation map is one of the most well-studied functional maps of the visual cortex. However, results from the literature are of different qualities. Clear boundaries among different orientation domains and blurred uncertain distinctions were shown in different studies. These unclear imaging results will lead to an inaccuracy in depicting cortical structures, and the lack of consideration in experimental design will also lead to biased depictions of the cortical features. How we accurately define orientation domains will impact the entire field of research. In this study, we test how spatial frequency (SF), stimulus size, location, chromatic, and data processing methods affect the orientation functional maps (including a large area of dorsal V4, and parts of dorsal V1) acquired by intrinsic signal optical imaging. Our results indicate that, for large imaging fields, large grating stimuli with mixed SF components should be considered to acquire the orientation map. A diffusion model image enhancement based on the difference map could further improve the map quality. In addition, the similar outcomes of achromatic and chromatic gratings indicate two alternative types of afferents from LGN, pooling in V1 to generate cue-invariant orientation selectivity.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"240 ","pages":"Article 102656"},"PeriodicalIF":6.7,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000923/pdfft?md5=d10cbf14051a20a184842cf64d84b05b&pid=1-s2.0-S0301008224000923-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Population coding for figure-ground texture segregation in macaque V1 and V4 猕猴 V1 和 V4 中图形-地面纹理分离的群体编码。
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-07-04 DOI: 10.1016/j.pneurobio.2024.102655
Xing-Nan Zhao , Xing-Si Dong , Dan-Qing Jiang , Si Wu , Shi-Ming Tang , Cong Yu
{"title":"Population coding for figure-ground texture segregation in macaque V1 and V4","authors":"Xing-Nan Zhao ,&nbsp;Xing-Si Dong ,&nbsp;Dan-Qing Jiang ,&nbsp;Si Wu ,&nbsp;Shi-Ming Tang ,&nbsp;Cong Yu","doi":"10.1016/j.pneurobio.2024.102655","DOIUrl":"10.1016/j.pneurobio.2024.102655","url":null,"abstract":"<div><p>Object recognition often involves the brain segregating objects from their surroundings. Neurophysiological studies of figure-ground texture segregation have yielded inconsistent results, particularly on whether V1 neurons can perform figure-ground texture segregation or just detect texture borders. To address this issue from a population perspective, we utilized two-photon calcium imaging to simultaneously record the responses of large samples of V1 and V4 neurons to figure-ground texture stimuli in awake, fixating macaques. The average response changes indicate that V1 neurons mainly detect texture borders, while V4 neurons are involved in figure-ground segregation. However, population analysis (SVM decoding of PCA-transformed neuronal responses) reveal that V1 neurons not only detect figure-ground borders, but also contribute to figure-ground texture segregation, although requiring substantially more principal components than V4 neurons to reach a 75 % decoding accuracy. Individually, V1/V4 neurons showing larger (negative/positive) figure-ground response differences contribute more to figure-ground segregation. But for V1 neurons, the contribution becomes significant only when many principal components are considered. We conclude that V1 neurons participate in figure-ground segregation primarily by defining the figure borders, and the poorly structured figure-ground information V1 neurons carry could be further utilized by V4 neurons to accomplish figure-ground segregation.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"240 ","pages":"Article 102655"},"PeriodicalIF":6.7,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The homogenous hippocampus: How hippocampal cells process available and potential goals 同质海马:海马细胞如何处理可用目标和潜在目标。
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-07-02 DOI: 10.1016/j.pneurobio.2024.102653
Neil McNaughton , David Bannerman
{"title":"The homogenous hippocampus: How hippocampal cells process available and potential goals","authors":"Neil McNaughton ,&nbsp;David Bannerman","doi":"10.1016/j.pneurobio.2024.102653","DOIUrl":"10.1016/j.pneurobio.2024.102653","url":null,"abstract":"<div><p>We present here a view of the firing patterns of hippocampal cells that is contrary, both functionally and anatomically, to conventional wisdom. We argue that the hippocampus responds to efference copies of goals encoded elsewhere; and that it uses these to detect and resolve conflict or interference between goals in general. While goals can involve space, hippocampal cells do not encode spatial (or other special types of) memory, as such. We also argue that the transverse circuits of the hippocampus operate in an essentially homogeneous way along its length. The apparently different functions of different parts (e.g. memory retrieval versus anxiety) result from the different (situational/motivational) inputs on which those parts perform the same fundamental computational operations. On this view, the key role of the hippocampus is the iterative adjustment, via Papez-like circuits, of synaptic weights in cell assemblies elsewhere.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"240 ","pages":"Article 102653"},"PeriodicalIF":6.7,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000893/pdfft?md5=65565ae54d4a1c6567131ef55d7dc0d0&pid=1-s2.0-S0301008224000893-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adolescent cannabinoid exposure rescues phencyclidine-induced social deficits through modulation of CA2 transmission 青春期大麻素暴露可通过调节 CA2 传输来挽救苯环利定诱发的社交障碍。
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-06-30 DOI: 10.1016/j.pneurobio.2024.102652
Marta Barrera-Conde , Carla Ramon-Duaso , Jose Antonio González-Parra , Emma Veza-Estevez , Vivien Chevaleyre , Rebecca A. Piskorowski , Rafael de la Torre , Arnau Busquets-García , Patricia Robledo
{"title":"Adolescent cannabinoid exposure rescues phencyclidine-induced social deficits through modulation of CA2 transmission","authors":"Marta Barrera-Conde ,&nbsp;Carla Ramon-Duaso ,&nbsp;Jose Antonio González-Parra ,&nbsp;Emma Veza-Estevez ,&nbsp;Vivien Chevaleyre ,&nbsp;Rebecca A. Piskorowski ,&nbsp;Rafael de la Torre ,&nbsp;Arnau Busquets-García ,&nbsp;Patricia Robledo","doi":"10.1016/j.pneurobio.2024.102652","DOIUrl":"10.1016/j.pneurobio.2024.102652","url":null,"abstract":"<div><p>Psychotic disorders entail intricate conditions marked by disruptions in cognition, perception, emotions, and social behavior. Notably, psychotic patients who use cannabis tend to show less severe deficits in social behaviors, such as the misinterpretation of social cues and the inability to interact with others. However, the biological underpinnings of this epidemiological interaction remain unclear. Here, we used the NMDA receptor blocker phencyclidine (PCP) to induce psychotic-like states and to study the impact of adolescent cannabinoid exposure on social behavior deficits and synaptic transmission changes in hippocampal area CA2, a region known to be active during social interactions. In particular, adolescent mice underwent 7 days of subchronic treatment with the synthetic cannabinoid, WIN 55, 212–2 (WIN) followed by one injection of PCP. Using behavioral, biochemical, and electrophysiological approaches, we showed that PCP persistently reduced sociability, decreased GAD67 expression in the hippocampus, and induced GABAergic deficits in proximal inputs from CA3 and distal inputs from the entorhinal cortex (EC) to CA2. Notably, WIN exposure during adolescence specifically restores adult sociability deficits, the expression changes in GAD67, and the GABAergic impairments in the EC-CA2 circuit, but not in the CA3-CA2 circuit. Using a chemogenetic approach to target EC-CA2 projections, we demonstrated the involvement of this specific circuit on sociability deficits. Indeed, enhancing EC-CA2 transmission was sufficient to induce sociability deficits in vehicle-treated mice, but not in animals treated with WIN during adolescence, suggesting a mechanism by which adolescent cannabinoid exposure rescues sociability deficits caused by enhanced EC-CA2 activity in adult mice.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"240 ","pages":"Article 102652"},"PeriodicalIF":6.7,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocyte-secreted C3 signaling impairs neuronal development and cognition in autoimmune diseases 星形胶质细胞分泌的C3信号损害自身免疫性疾病的神经元发育和认知能力
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-06-28 DOI: 10.1016/j.pneurobio.2024.102654
Fan Zhu , Pengyan He , Wei Jiang , Shabbir Khan Afridi , Huiming Xu , Maali Alahmad , Yu-Wen Alvin Huang , Wei Qiu , Guangyou Wang , Changyong Tang
{"title":"Astrocyte-secreted C3 signaling impairs neuronal development and cognition in autoimmune diseases","authors":"Fan Zhu ,&nbsp;Pengyan He ,&nbsp;Wei Jiang ,&nbsp;Shabbir Khan Afridi ,&nbsp;Huiming Xu ,&nbsp;Maali Alahmad ,&nbsp;Yu-Wen Alvin Huang ,&nbsp;Wei Qiu ,&nbsp;Guangyou Wang ,&nbsp;Changyong Tang","doi":"10.1016/j.pneurobio.2024.102654","DOIUrl":"10.1016/j.pneurobio.2024.102654","url":null,"abstract":"<div><p>Neuromyelitis optica (NMO) arises from primary astrocytopathy induced by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4), leading to severe neurological sequelae such as vision loss, motor deficits, and cognitive decline. Mounting evidence has shown that dysregulated activation of complement components contributes to NMO pathogenesis. Complement C3 deficiency has been shown to protect against hippocampal neurodegeneration and cognitive decline in neurodegenerative disorders (e.g., Alzheimer's disease, AD) and autoimmune diseases (e.g., multiple sclerosis, MS). However, whether inhibiting the C3 signaling can ameliorate cognitive dysfunctions in NMO remains unclear. In this study, we found that the levels of C3a, a split product of C3, significantly correlate with cognitive impairment in our patient cohort. In response to the stimulation of AQP4 autoantibodies, astrocytes were activated to secrete complement C3, which inhibited the development of cultured neuronal dendritic arborization. NMO mouse models exhibited reduced adult hippocampal newborn neuronal dendritic and spine development, as well as impaired learning and memory functions, which could be rescued by decreasing C3 levels in astrocytes. Mechanistically, we found that C3a engaged with C3aR to impair neuronal development by dampening β-catenin signalling. Additionally, inhibition of the C3-C3aR-GSK3β/β-catenin cascade restored neuronal development and ameliorated cognitive impairments. Collectively, our results suggest a pivotal role of the activation of the C3-C3aR network in neuronal development and cognition through mediating astrocyte and adult-born neuron communication, which represents a potential therapeutic target for autoimmune-related cognitive impairment diseases.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"240 ","pages":"Article 102654"},"PeriodicalIF":6.7,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141470452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Behavior-related visual activations in the auditory cortex of nonhuman primates 非人灵长类听觉皮层中与行为相关的视觉激活。
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-06-13 DOI: 10.1016/j.pneurobio.2024.102637
Ying Huang , Michael Brosch
{"title":"Behavior-related visual activations in the auditory cortex of nonhuman primates","authors":"Ying Huang ,&nbsp;Michael Brosch","doi":"10.1016/j.pneurobio.2024.102637","DOIUrl":"10.1016/j.pneurobio.2024.102637","url":null,"abstract":"<div><p>While it is well established that sensory cortical regions traditionally thought to be unimodal can be activated by stimuli from modalities other than the dominant one, functions of such foreign-modal activations are still not clear. Here we show that visual activations in early auditory cortex can be related to whether or not the monkeys engaged in audio-visual tasks, to the time when the monkeys reacted to the visual component of such tasks, and to the correctness of the monkeys’ response to the auditory component of such tasks. These relationships between visual activations and behavior suggest that auditory cortex can be recruited for visually-guided behavior and that visual activations can prime auditory cortex such that it is prepared for processing future sounds. Our study thus provides evidence that foreign-modal activations in sensory cortex can contribute to a subject’s ability to perform tasks on stimuli from foreign and dominant modalities.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"240 ","pages":"Article 102637"},"PeriodicalIF":6.7,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030100822400073X/pdfft?md5=72aae3d9fce76531654d651a80db7e68&pid=1-s2.0-S030100822400073X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141327798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TRPV1 channel in the pathophysiology of epilepsy and its potential as a molecular target for the development of new antiseizure drug candidates 癫痫病理生理学中的 TRPV1 通道及其作为候选抗癫痫新药开发分子靶点的潜力
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-06-02 DOI: 10.1016/j.pneurobio.2024.102634
Katarzyna Socała , Marcin Jakubiec , Michał Abram , Jakub Mlost , Katarzyna Starowicz , Rafał M. Kamiński , Katarzyna Ciepiela , Marta Andres-Mach , Mirosław Zagaja , Cameron S. Metcalf , Przemysław Zawadzki , Piotr Wlaź , Krzysztof Kamiński
{"title":"TRPV1 channel in the pathophysiology of epilepsy and its potential as a molecular target for the development of new antiseizure drug candidates","authors":"Katarzyna Socała ,&nbsp;Marcin Jakubiec ,&nbsp;Michał Abram ,&nbsp;Jakub Mlost ,&nbsp;Katarzyna Starowicz ,&nbsp;Rafał M. Kamiński ,&nbsp;Katarzyna Ciepiela ,&nbsp;Marta Andres-Mach ,&nbsp;Mirosław Zagaja ,&nbsp;Cameron S. Metcalf ,&nbsp;Przemysław Zawadzki ,&nbsp;Piotr Wlaź ,&nbsp;Krzysztof Kamiński","doi":"10.1016/j.pneurobio.2024.102634","DOIUrl":"10.1016/j.pneurobio.2024.102634","url":null,"abstract":"<div><p>Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"240 ","pages":"Article 102634"},"PeriodicalIF":6.7,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141228952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experience-dependent regulation of dopaminergic signaling in the somatosensory cortex 体感皮层多巴胺能信号传导的经验依赖性调节
IF 6.7 2区 医学
Progress in Neurobiology Pub Date : 2024-06-02 DOI: 10.1016/j.pneurobio.2024.102630
Tousif Jamal , Xuan Yan , Angelica da Silva Lantyer , Judith G. ter Horst , Tansu Celikel
{"title":"Experience-dependent regulation of dopaminergic signaling in the somatosensory cortex","authors":"Tousif Jamal ,&nbsp;Xuan Yan ,&nbsp;Angelica da Silva Lantyer ,&nbsp;Judith G. ter Horst ,&nbsp;Tansu Celikel","doi":"10.1016/j.pneurobio.2024.102630","DOIUrl":"10.1016/j.pneurobio.2024.102630","url":null,"abstract":"<div><p>Dopamine critically influences reward processing, sensory perception, and motor control. Yet, the modulation of dopaminergic signaling by sensory experiences is not fully delineated. Here, by manipulating sensory experience using bilateral single-row whisker deprivation, we demonstrated that gene transcription in the dopaminergic signaling pathway (<em>DSP</em>) undergoes experience-dependent plasticity in both granular and supragranular layers of the primary somatosensory (barrel) cortex (<em>S</em>1). Sensory experience and deprivation compete for the regulation of <em>DSP</em> transcription across neighboring cortical columns, and sensory deprivation-induced changes in <em>DSP</em> are topographically constrained. These changes in <em>DSP</em> extend beyond cortical map plasticity and influence neuronal information processing. Pharmacological regulation of D2 receptors, a key component of <em>DSP</em>, revealed that D2 receptor activation suppresses excitatory neuronal excitability, hyperpolarizes the action potential threshold, and reduces the instantaneous firing rate. These findings suggest that the dopaminergic drive originating from midbrain dopaminergic neurons, targeting the sensory cortex, is subject to experience-dependent regulation and might create a regulatory feedback loop for modulating sensory processing. Finally, using topological gene network analysis and mutual information, we identify the molecular hubs of experience-dependent plasticity of <em>DSP</em>. These findings provide new insights into the mechanisms by which sensory experience shapes dopaminergic signaling in the brain and might help unravel the sensory deficits observed after dopamine depletion.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"239 ","pages":"Article 102630"},"PeriodicalIF":6.7,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141228839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信