A theory of hippocampal function: New developments

IF 6.7 2区 医学 Q1 NEUROSCIENCES
Edmund T. Rolls , Alessandro Treves
{"title":"A theory of hippocampal function: New developments","authors":"Edmund T. Rolls ,&nbsp;Alessandro Treves","doi":"10.1016/j.pneurobio.2024.102636","DOIUrl":null,"url":null,"abstract":"<div><p>We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build ‘where’ spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for ‘what’ object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"238 ","pages":"Article 102636"},"PeriodicalIF":6.7000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000728/pdfft?md5=e792602997e8ebff53c4e95af5dbc3e9&pid=1-s2.0-S0301008224000728-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008224000728","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build ‘where’ spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for ‘what’ object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.

海马功能理论:新进展
我们在此进一步发展了海马表观记忆系统中信息存储及其回溯到新皮质的唯一定量理论。该理论的升级解释了对灵长类动物(包括人类)海马体空间表征理解的一场革命。这对于灵长类动物的记忆和导航至关重要:在人类中,这些功能由腹侧视觉皮层流中的特征组合建立 "在哪里 "的空间视图表征的通路提供支持,这些通路与下颞视觉皮层的 "是什么 "物体和面部信息以及眶额叶皮层的奖赏信息的通路是分开的。计算方面的主要新进展包括:CA3吸引子网络存储整个空间图的能力;自组织连续空间表征中固有的相关性如何影响存储能力;CA3网络如何将连续空间表征与离散物体和奖励表征结合起来;部分通过眶额叶皮层的胆碱能通路到达海马的奖励在后来巩固为长期记忆中的作用;以及利用波茨网络分析新皮层信息存储的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Neurobiology
Progress in Neurobiology 医学-神经科学
CiteScore
12.80
自引率
1.50%
发文量
107
审稿时长
33 days
期刊介绍: Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信