Wanja A. Mössing , Svea C.Y. Schroeder , Anna Lena Biel , Niko A. Busch
{"title":"对侧延迟活动和阿尔法侧化反映了视觉记忆中的视网膜参照系和屏幕中心参照系","authors":"Wanja A. Mössing , Svea C.Y. Schroeder , Anna Lena Biel , Niko A. Busch","doi":"10.1016/j.pneurobio.2024.102576","DOIUrl":null,"url":null,"abstract":"<div><p>The visual system represents objects in a lateralized manner, with contralateral cortical hemispheres responsible for left and right visual hemifields. This organization extends to visual short-term memory (VSTM), as evidenced by electrophysiological indices of VSTM maintenance: contralateral delay activity (CDA) and alpha-band lateralization. However, it remains unclear if VSTM represents object locations in gaze-centered (retinotopic) or screen-centered (spatiotopic) coordinates, especially after eye movements. In two experiments, participants encoded the colors of target objects and made a lateral saccade during the maintenance interval, thereby shifting the object’s location on the retina. A non-lateralized probe stimulus was then presented at the new fixation for a change detection task. The CDA maintained lateralization towards the target’s original retinotopic location, unaffected by subsequent saccades, and did not invert polarity even when a saccade brought that location into the opposite hemifield. We also found conventional alpha lateralization towards the target’s location before a saccade. After a saccade, however, alpha was lateralized towards the screen center regardless of the target’s original location, even in a control condition without any memory requirements. This suggests that post-saccadic alpha-band lateralization reflects attentional processes unrelated to memory, while pre- and post-saccade CDA reflect VSTM maintenance in a retinotopic reference frame.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"234 ","pages":"Article 102576"},"PeriodicalIF":6.7000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000121/pdfft?md5=7c9a19b9f8c8e9cd6a1fdf61990aa92b&pid=1-s2.0-S0301008224000121-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Contralateral delay activity and alpha lateralization reflect retinotopic and screen-centered reference frames in visual memory\",\"authors\":\"Wanja A. Mössing , Svea C.Y. Schroeder , Anna Lena Biel , Niko A. Busch\",\"doi\":\"10.1016/j.pneurobio.2024.102576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The visual system represents objects in a lateralized manner, with contralateral cortical hemispheres responsible for left and right visual hemifields. This organization extends to visual short-term memory (VSTM), as evidenced by electrophysiological indices of VSTM maintenance: contralateral delay activity (CDA) and alpha-band lateralization. However, it remains unclear if VSTM represents object locations in gaze-centered (retinotopic) or screen-centered (spatiotopic) coordinates, especially after eye movements. In two experiments, participants encoded the colors of target objects and made a lateral saccade during the maintenance interval, thereby shifting the object’s location on the retina. A non-lateralized probe stimulus was then presented at the new fixation for a change detection task. The CDA maintained lateralization towards the target’s original retinotopic location, unaffected by subsequent saccades, and did not invert polarity even when a saccade brought that location into the opposite hemifield. We also found conventional alpha lateralization towards the target’s location before a saccade. After a saccade, however, alpha was lateralized towards the screen center regardless of the target’s original location, even in a control condition without any memory requirements. This suggests that post-saccadic alpha-band lateralization reflects attentional processes unrelated to memory, while pre- and post-saccade CDA reflect VSTM maintenance in a retinotopic reference frame.</p></div>\",\"PeriodicalId\":20851,\"journal\":{\"name\":\"Progress in Neurobiology\",\"volume\":\"234 \",\"pages\":\"Article 102576\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0301008224000121/pdfft?md5=7c9a19b9f8c8e9cd6a1fdf61990aa92b&pid=1-s2.0-S0301008224000121-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301008224000121\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008224000121","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Contralateral delay activity and alpha lateralization reflect retinotopic and screen-centered reference frames in visual memory
The visual system represents objects in a lateralized manner, with contralateral cortical hemispheres responsible for left and right visual hemifields. This organization extends to visual short-term memory (VSTM), as evidenced by electrophysiological indices of VSTM maintenance: contralateral delay activity (CDA) and alpha-band lateralization. However, it remains unclear if VSTM represents object locations in gaze-centered (retinotopic) or screen-centered (spatiotopic) coordinates, especially after eye movements. In two experiments, participants encoded the colors of target objects and made a lateral saccade during the maintenance interval, thereby shifting the object’s location on the retina. A non-lateralized probe stimulus was then presented at the new fixation for a change detection task. The CDA maintained lateralization towards the target’s original retinotopic location, unaffected by subsequent saccades, and did not invert polarity even when a saccade brought that location into the opposite hemifield. We also found conventional alpha lateralization towards the target’s location before a saccade. After a saccade, however, alpha was lateralized towards the screen center regardless of the target’s original location, even in a control condition without any memory requirements. This suggests that post-saccadic alpha-band lateralization reflects attentional processes unrelated to memory, while pre- and post-saccade CDA reflect VSTM maintenance in a retinotopic reference frame.
期刊介绍:
Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.