{"title":"缺乏肌营养不良蛋白的脊椎动物的无条件恐惧反应","authors":"Saba Gharibi , Cyrille Vaillend , Angus Lindsay","doi":"10.1016/j.pneurobio.2024.102590","DOIUrl":null,"url":null,"abstract":"<div><p>Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.</p></div>","PeriodicalId":20851,"journal":{"name":"Progress in Neurobiology","volume":"235 ","pages":"Article 102590"},"PeriodicalIF":6.7000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301008224000261/pdfft?md5=8c89744ca34fc843b8fd9ccaf61922b7&pid=1-s2.0-S0301008224000261-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The unconditioned fear response in vertebrates deficient in dystrophin\",\"authors\":\"Saba Gharibi , Cyrille Vaillend , Angus Lindsay\",\"doi\":\"10.1016/j.pneurobio.2024.102590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.</p></div>\",\"PeriodicalId\":20851,\"journal\":{\"name\":\"Progress in Neurobiology\",\"volume\":\"235 \",\"pages\":\"Article 102590\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0301008224000261/pdfft?md5=8c89744ca34fc843b8fd9ccaf61922b7&pid=1-s2.0-S0301008224000261-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301008224000261\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301008224000261","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The unconditioned fear response in vertebrates deficient in dystrophin
Dystrophin loss due to mutations in the Duchenne muscular dystrophy (DMD) gene is associated with a wide spectrum of neurocognitive comorbidities, including an aberrant unconditioned fear response to stressful/threat stimuli. Dystrophin-deficient animal models of DMD demonstrate enhanced stress reactivity that manifests as sustained periods of immobility. When the threat is repetitive or severe in nature, dystrophinopathy phenotypes can be exacerbated and even cause sudden death. Thus, it is apparent that enhanced sensitivity to stressful/threat stimuli in dystrophin-deficient vertebrates is a legitimate cause of concern for patients with DMD that could impact neurocognition and pathophysiology. This review discusses our current understanding of the mechanisms and consequences of the hypersensitive fear response in preclinical models of DMD and the potential challenges facing clinical translatability.
期刊介绍:
Progress in Neurobiology is an international journal that publishes groundbreaking original research, comprehensive review articles and opinion pieces written by leading researchers. The journal welcomes contributions from the broad field of neuroscience that apply neurophysiological, biochemical, pharmacological, molecular biological, anatomical, computational and behavioral analyses to problems of molecular, cellular, developmental, systems, and clinical neuroscience.