Protoplasma最新文献

筛选
英文 中文
Aerial and terrestrial root habits influence the composition of the cell walls of Vanilla phaeantha (Orchidaceae). 气生根和陆生根的习性影响香草(兰科)细胞壁的组成。
IF 2.5 3区 生物学
Protoplasma Pub Date : 2025-01-01 Epub Date: 2024-08-29 DOI: 10.1007/s00709-024-01980-9
Jéssica Ferreira de Lima, Denis Coelho de Oliveira, Vinícius Coelho Kuster, Ana Silvia Franco Pinheiro Moreira
{"title":"Aerial and terrestrial root habits influence the composition of the cell walls of Vanilla phaeantha (Orchidaceae).","authors":"Jéssica Ferreira de Lima, Denis Coelho de Oliveira, Vinícius Coelho Kuster, Ana Silvia Franco Pinheiro Moreira","doi":"10.1007/s00709-024-01980-9","DOIUrl":"10.1007/s00709-024-01980-9","url":null,"abstract":"<p><p>In response to the restrictions imposed by their epiphytic habit, orchids have developed structural traits that allow greater efficiency in water uptake and use, such as a complex adventitious root system with velamen. The composition of cell wall of this specialized epidermis can be altered according to the substrate to which it is fixed, influencing wall permeability, absorption, and storage of water in roots. The current study aimed to evaluate the cell wall composition of adventitious roots of Vanilla phaeantha (Orchidaceae) that grow attached to the phorophyte, fixed in the soil, or hung free. Immunocytochemical analyses were used to determine the protein, hemicellulose, and pectin composition of the cell walls of aerial and terrestrial roots. We observed that pectins are present in the different tissues of the aerial roots, while in the terrestrial roots, they are concentrated in the cortical parenchyma. The deposition of xyloglucans, extensins, and arabinogalactans was greater in the epidermis of the free side of the roots attached to the phorophyte. The strong labeling of pectins in aerial roots may be related to the influx of water and nutrients, which are generally scarce in this environment. The arrangement of hemicelluloses and proteins with the pectins may be associated with increased cell rigidity and sustainability, a feature of interest for the aerial roots. In summary, the habit of roots can interfere with the non-cellulosic composition of the cell walls of V. phaeantha, possibly related to changes in cell functionality.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"87-98"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142111334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction of Capnodium alfenasii with extrafloral nectaries of Azadirachta indica. Capnodium alfenasii 与 Azadirachta indica 花外蜜腺的相互作用。
IF 2.5 3区 生物学
Protoplasma Pub Date : 2025-01-01 Epub Date: 2024-08-07 DOI: 10.1007/s00709-024-01977-4
Naasoom Luiz Santos Mesquita, Carlos André Espolador Leitão, Poliana Prates de Souza Soares, Quelmo Silva de Novaes, Maruzanete Pereira de Melo, José Luiz Bezerra, Armínio Santos
{"title":"Interaction of Capnodium alfenasii with extrafloral nectaries of Azadirachta indica.","authors":"Naasoom Luiz Santos Mesquita, Carlos André Espolador Leitão, Poliana Prates de Souza Soares, Quelmo Silva de Novaes, Maruzanete Pereira de Melo, José Luiz Bezerra, Armínio Santos","doi":"10.1007/s00709-024-01977-4","DOIUrl":"10.1007/s00709-024-01977-4","url":null,"abstract":"<p><p>Sooty moulds are saprophytic epiphytic fungi that grow mostly on insect secretions, but they can also be associated with plant secretions. In this study, we aimed to describe de interaction of Capnodium alfenasii sooty mould with the extrafloral shoot nectaries of Azadirachta indica. Anatomical and histochemical studies were carried out on serial sections of extrafloral shoot nectaries of A. indica without and with C. alfenasii infestation. The total soluble sugar content of the secreted nectar was determined, and the conidial germination of the fungus in distilled water and in dextrose and nectar solutions was evaluated. The shoot nectaries of A. indica are elongated structures that occur in pairs near the base of the petiole. The exuded nectar contains an average of 534.8 µg of total soluble sugars per µL of nectar and provides ideal conditions for conidial germination and fungal growth. C. alfenasii hyphae grow on the nectary, penetrate through breaks in the cuticle, travel under the cuticle and penetrate the secretory tissue by inter- and intracellular routes. The present report is the first to describe the interaction of C. alfenasii with the A. indica nectary, including the penetration of hyphae into nectariferous tissues and the plant defence mechanisms.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"51-59"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated insights into the cytological, histochemical, and cell wall composition features of Espinosa nothofagi (Hymenoptera) gall tissues: implications for functionality. 对 Espinosa nothofagi(膜翅目)虫瘿组织的细胞学、组织化学和细胞壁组成特征的综合认识:对功能性的影响。
IF 2.5 3区 生物学
Protoplasma Pub Date : 2025-01-01 Epub Date: 2024-09-09 DOI: 10.1007/s00709-024-01985-4
Lubia María Guedes, Narciso Aguilera, Vinícius Coelho Kuster, Renê Gonçalves da Silva Carneiro, Denis Coelho de Oliveira
{"title":"Integrated insights into the cytological, histochemical, and cell wall composition features of Espinosa nothofagi (Hymenoptera) gall tissues: implications for functionality.","authors":"Lubia María Guedes, Narciso Aguilera, Vinícius Coelho Kuster, Renê Gonçalves da Silva Carneiro, Denis Coelho de Oliveira","doi":"10.1007/s00709-024-01985-4","DOIUrl":"10.1007/s00709-024-01985-4","url":null,"abstract":"<p><p>Many insect-induced galls are considered complex structures due to their tissue compartmentalization and multiple roles performed by them. The current study investigates the complex interaction between Nothofagus obliqua host plant and the hymenopteran gall-inducer Espinosa nothofagi, focusing on cell wall properties and cytological features. The E. nothofagi galls present an inner cortex with nutritive and storage tissues, as well as outer cortex with epidermis, chlorenchyma, and water-storing parenchyma. The water-storing parenchyma cells are rich in pectins, heteromannans, and xyloglucans in their walls, and have large vacuoles. Homogalacturonans contribute to water retention, and periplasmic spaces function as additional water reservoirs. Nutritive storage cell walls support nutrient storage, with plasmodesmata facilitating nutrient mobilization crucial for larval nutrition. Their primary and sometimes thick secondary cell walls support structural integrity and act as a carbon reserve. The absent labeling of non-cellulosic epitopes indicates a predominantly cellulosic nature in nutritive cell walls, facilitating larval access to lipid, protein, and reducing sugar-rich contents. The nutritive tissue, with functional chloroplasts and high metabolism-related organelles, displays signs of self-sufficiency, emphasizing its role in larval nutrition and cellular maintenance. Overall, the intricate cell wall composition in E. nothofagi galls showcases adaptations for water storage, nutrient mobilization, and larval nutrition, contributing significantly to our understanding of plant-insect interactions.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"149-165"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smoke-water treatment of seeds, an ancient technique for increasing seed vigor. 烟水处理种子,一种提高种子活力的古老技术。
IF 2.5 3区 生物学
Protoplasma Pub Date : 2025-01-01 Epub Date: 2024-08-17 DOI: 10.1007/s00709-024-01975-6
Nidhi Pandey, Sandeep Nalla, Abhinav Dayal, Prashant Rai, Vaidurya Pratap Sahi
{"title":"Smoke-water treatment of seeds, an ancient technique for increasing seed vigor.","authors":"Nidhi Pandey, Sandeep Nalla, Abhinav Dayal, Prashant Rai, Vaidurya Pratap Sahi","doi":"10.1007/s00709-024-01975-6","DOIUrl":"10.1007/s00709-024-01975-6","url":null,"abstract":"<p><p>Germination is an essential phenomenon in the life cycle of plants, and a variety of external and internal factors influence it. Fire and the produced smoke have been vital environmental stimulants for the germination of seeds in many plant species, like Leucospermum cordifolium and Serruria florida. These plants do not germinate at all if fire and smoke are not present. This phenomenon of germination in plant species has existed in the ecosystem since ancient times. Various studies to study the response of seeds to smoke and its extracts have been undertaken for stimulation of germination by burning various plant materials and bubbling the smoke produced through water. The application of plant-derived smoke and smoke water is well known for promoting germination, breaking dormancy, and checking abiotic stress. This significantly indicates that plant-derived smoke contains some bioactive metabolites responsible for the physiological metabolism of seed germination and is involved in enhancing seed vigor. The present review deals with the ancient use of smoke and smoke extracts for seed priming, the cost-efficient method of its preparation, the mode of action of karrikins relating to its perception by plants, and its significant effects on various crops, including its ability to check biotic and abiotic stresses.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"3-13"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of nocodazole and latrunculin B on locomotion of amoeboid cells of Rhizochromulina sp. strain B44 (Heterokontophyta, Dictyochophyceae). nocodazole和latrunculin B对Rhizochromulina sp.菌株B44变形虫细胞运动的影响。
IF 2.5 3区 生物学
Protoplasma Pub Date : 2024-12-27 DOI: 10.1007/s00709-024-02024-y
Pavel Safonov, Vadim Khaitov, Olga Palii, Sergei Skarlato, Mariia Berdieva
{"title":"Effects of nocodazole and latrunculin B on locomotion of amoeboid cells of Rhizochromulina sp. strain B44 (Heterokontophyta, Dictyochophyceae).","authors":"Pavel Safonov, Vadim Khaitov, Olga Palii, Sergei Skarlato, Mariia Berdieva","doi":"10.1007/s00709-024-02024-y","DOIUrl":"https://doi.org/10.1007/s00709-024-02024-y","url":null,"abstract":"<p><p>Rhizochromulina is a genus of unicellular dictyochophycean algae (Heterokontophyta), comprising a single species R. marina and numerous strains. Recently, we described the first arctic rhizochromuline-Rhizochromulina sp. strain B44. Amoeboid cells of this algae are able to transform into flagellates, and this transition can be triggered by prolonged mechanical disturbance. Thin branching pseudopodia of the neighboring rhizochromuline cells fuse to form a meroplasmodium. The pseudopodia contain microtubules, but do not contain actin microfilaments; actin forms the cytoplasmic cytoskeleton and extends only to the bases of the pseudopodia. Microtubule-driven pseudopodia are characteristic to a plethora of eukaryotes, but the role of microtubular and actin cytoskeleton in locomotion of these organisms remains poorly understood. We conducted a series of experiments where amoeboid cells of Rhizochromulina sp. B44 were treated with either 10 µM nocodazole, 10 µM latrunculin B, or both drugs simultaneously. Cellular locomotion was captured on camera, tracked, and then analyzed with the help of the generalized additive mixed model. The obtained results indicate that both drugs, when applied separately, decrease the motility of the studied cells. Unexpectedly, the combined treatment had the opposite effect, as the cells became more motile. The analysis also revealed a non-linear pattern of relationship between motility of amoeboid cells of rhizochromulines and density of their population.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional crosstalk of sucrose and G protein signaling in maize thermotolerance by modulating osmoregulation system. 通过渗透调节系统调节玉米耐热性中蔗糖和G蛋白信号的功能串扰。
IF 2.5 3区 生物学
Protoplasma Pub Date : 2024-12-19 DOI: 10.1007/s00709-024-02020-2
Hong-Yan Chen, Zhong-Guang Li
{"title":"Functional crosstalk of sucrose and G protein signaling in maize thermotolerance by modulating osmoregulation system.","authors":"Hong-Yan Chen, Zhong-Guang Li","doi":"10.1007/s00709-024-02020-2","DOIUrl":"https://doi.org/10.1007/s00709-024-02020-2","url":null,"abstract":"<p><p>Sucrose (SUC) is a signaling molecule with multiple physiological functions. G protein is a kind of receptor that converts extracellular first messenger into intracellular second messenger. However, it is little known that SUC interplays with G protein signaling in maize thermotolerance. In this work, using maize seedlings as materials, the interplay between SUC and G protein signaling in maize thermotolerance was investigated. The results indicate that heat stress-decreased survival percentage and tissue viability of the seedlings was mitigated by SUC. Similarly, heat stress-increased malondialdehyde content and electrolyte leakage also was reduced by SUC. These findings show that SUC can potentially enhance thermotolerance in maize seedlings. Also, SUC-enhanced thermotolerance was abolished by suramin (G protein inhibitor) and N-ethylmaleimide (SUC transport inhibitor), but enhanced by 3-O-methyl-D-glucose (G protein activator), indicating the interplay of SUC and G protein signaling in maize thermotolerance. To investigate the possible mechanism behind SUC-G protein interaction in enhancing maize thermotolerance, osmoregulation in mesocotyls of seedlings were evaluated before and after heat stress. The results suggest that osmolytes (SUC, glucose, fructose, total soluble sugar, proline, and glycine betaine) contents in mesocotyls under non-heat and heat stress were increased by SUC in varying degrees. Likewise, the osmolyte-metabolizing enzymes (sucrose-phosphate synthase, sucrose synthase, pyrroline-5-carboxylate synthase, ornithine aminotransferase, betaine-aldehyde dehydrogenase, and trehalase) activities were enhanced by SUC. Analogously, ZmSPS1, ZmSUS6, ZmP5CS, ZmOAT, ZmBADH, and ZmTRE1 expression in mesocotyls was up-regulated by SUC to different extent. These findings illustrate that the functional crosstalk of sucrose and G protein signaling in maize thermotolerance by modulating osmoregulation system.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of polyethylene glycol as an alternative to optimal cutting temperature medium in freeze sectioning for plant histochemical studies. 使用聚乙二醇作为植物组织化学研究中冷冻切片的最佳切割温度介质的替代品。
IF 2.5 3区 生物学
Protoplasma Pub Date : 2024-12-18 DOI: 10.1007/s00709-024-02008-y
Shobhon Paul, Pallabi Saha, Adinpunya Mitra
{"title":"Use of polyethylene glycol as an alternative to optimal cutting temperature medium in freeze sectioning for plant histochemical studies.","authors":"Shobhon Paul, Pallabi Saha, Adinpunya Mitra","doi":"10.1007/s00709-024-02008-y","DOIUrl":"https://doi.org/10.1007/s00709-024-02008-y","url":null,"abstract":"<p><p>Plant anatomical and histochemical studies are concerned with the structural organization of tissues as well as localization of various metabolites and enzyme activity inside cells and tissues. Traditionally, rotary microtomes are used for paraffin and resin-embedded samples which provide excellent preservation of tissue morphology but removes enzymes, lipid components, and various specialized metabolites. Freeze sectioning apparently remained unexplored in plant histology because of the presence of rigid cell walls and highly vacuolated cytoplasm in plant tissues. In this study, we have described a simple cryostat-based sectioning technique using polyethylene glycol (PEG) as embedding medium after glycerol infiltration that protects the plant tissues from freezing and thawing damage. We have also compared the suitability of inexpensive aqueous PEG solution as compared to commercially available optimal cutting temperature (OCT) medium and obtained identical microscopic images. Diverse plant organs from different genera were sectioned to check the application of this method in plant anatomical studies. In all the cases, cross sections were shown to be well preserved similar to paraffin-embedded plant tissues. In addition, histochemical analyses showed retention of metabolites and even enzymes in the tissues, which can make this method an alternate choice in cryo-microtomy replacing the expensive OCT medium.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning-based cytoskeleton segmentation for accurate high-throughput measurement of cytoskeleton density. 基于深度学习的细胞骨架分割,用于细胞骨架密度的精确高通量测量。
IF 2.5 3区 生物学
Protoplasma Pub Date : 2024-12-18 DOI: 10.1007/s00709-024-02019-9
Ryota Horiuchi, Asuka Kamimura, Yuga Hanaki, Hikari Matsumoto, Minako Ueda, Takumi Higaki
{"title":"Deep learning-based cytoskeleton segmentation for accurate high-throughput measurement of cytoskeleton density.","authors":"Ryota Horiuchi, Asuka Kamimura, Yuga Hanaki, Hikari Matsumoto, Minako Ueda, Takumi Higaki","doi":"10.1007/s00709-024-02019-9","DOIUrl":"https://doi.org/10.1007/s00709-024-02019-9","url":null,"abstract":"<p><p>Microscopic analyses of cytoskeleton organization are crucial for understanding various cellular activities, including cell proliferation and environmental responses in plants. Traditionally, assessments of cytoskeleton dynamics have been qualitative, relying on microscopy-assisted visual inspection. However, the transition to quantitative digital microscopy has introduced new technical challenges, with segmentation of cytoskeleton structures proving particularly demanding. In this study, we examined the utility of a deep learning-based segmentation method for accurate quantitative evaluation of cytoskeleton organization using confocal microscopic images of the cortical microtubules in tobacco BY-2 cells. The results showed that, although conventional methods sufficed for measurement of cytoskeleton angles and parallelness, the deep learning-based method significantly improved the accuracy of density measurements. To assess the versatility of the method, we extended our analysis to physiologically significant models in the context of changes in cytoskeleton density, namely Arabidopsis thaliana guard cells and zygotes. The deep learning-based method successfully improved the accuracy of cytoskeleton density measurements for quantitative evaluations of physiological changes in both stomatal movement in guard cells and intracellular polarization in elongating zygotes, confirming its utility in these applications. The results demonstrate the effectiveness of deep learning-based segmentation in providing precise and high-throughput measurements of cytoskeleton density, and has the potential to automate and expedite analyses of large-scale image datasets.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142847538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrastructure of the ejaculatory duct of Terrobittacus implicatus (Mecoptera: Bittacidae). 刺蝽射精管的超微结构。
IF 2.5 3区 生物学
Protoplasma Pub Date : 2024-12-16 DOI: 10.1007/s00709-024-02018-w
Qi-Hui Lyu, Shuang Xue, Xiao-Fei Wei, Wen-Jie Dong
{"title":"Ultrastructure of the ejaculatory duct of Terrobittacus implicatus (Mecoptera: Bittacidae).","authors":"Qi-Hui Lyu, Shuang Xue, Xiao-Fei Wei, Wen-Jie Dong","doi":"10.1007/s00709-024-02018-w","DOIUrl":"https://doi.org/10.1007/s00709-024-02018-w","url":null,"abstract":"<p><p>The unique mating behavior of Bittacidae has been extensively studied, yet the mechanisms underlying internal sperm transport and temporary storage before mating remain enigmatic. Herein, we aim to elucidate these mechanisms by investigating the fine structure of the ejaculatory duct, which serves for sperm transport and temporary storage. The ultrastructure of the ejaculatory duct of Terrobittacus implicatus (Mecoptera: Bittacidae) was examined by light and transmission electron microscopy for the first time in this study. The ejaculatory duct is composed of a median duct and a pair of symmetrical accessory sacs. In the proximal fifth portion, the two accessory sacs encompass the median duct in two loose layers. In the remaining distal portion, the median duct remains centrally positioned, and two accessory sacs symmetrically enclose its lateral and ventral surfaces. The distal median duct consists of a basal lamina, an unevenly arranged epithelium, a large subcuticular cavity, and a narrow inner cuticle. The distal accessory sac can be divided into three areas with distinct ultrastructural features. The ejaculatory duct exhibits conspicuous secretory activity, and given the absence of an ectodermal accessory gland in males, it is possible that the ejaculatory duct may fulfill additional glandular function. The narrow lumen and the reduced muscular sheath of the ejaculatory duct may be associated with the unique mechanism of ejaculation and mating.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142829767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of sucrose in maintaining pollen viability and germinability in Corylus avellana L.: a possible strategy to cope with climate variability. 蔗糖在维持榛花粉活力和萌发性中的作用:应对气候变化的一种可能策略。
IF 2.5 3区 生物学
Protoplasma Pub Date : 2024-12-11 DOI: 10.1007/s00709-024-02015-z
C Brandoli, A Mortada, C Todeschini, C Siniscalco, E Sgarbi
{"title":"The role of sucrose in maintaining pollen viability and germinability in Corylus avellana L.: a possible strategy to cope with climate variability.","authors":"C Brandoli, A Mortada, C Todeschini, C Siniscalco, E Sgarbi","doi":"10.1007/s00709-024-02015-z","DOIUrl":"https://doi.org/10.1007/s00709-024-02015-z","url":null,"abstract":"<p><p>In this work, we propose a possible correlation between carbohydrate content in hazelnut pollen (wild type) and viability/germinability, also in a perspective of adaptation to climate variability. Samples from four different cultivation fields in Italy showed values of pollen viability characterized by high levels, ranging between 77.3 and 98.4% and a unique trend during the flowering period for each accession. When subjected to dehydration in controlled environment, pollen reduced the levels of viability to almost zero but recovered the initial values when rehydrated. The presence of anomalous pollen was found to be not significant, always below 4% in all accessions. The analysis on starch content gave negative results both when it was determined biochemically and detected by histological staining. Sucrose content resulted always higher than glucose and fructose in all the accessions analyzed. Its concentration throughout the dispersal phases reflected the trend of both pollen viability and germinability. These data seem to suggest a direct involvement of sucrose in the protection of plasma membranes from dehydration and the maintenance of pollen viability and germinability. This study demonstrates the sensitivity of hazelnut pollen to climatic fluctuations, particularly to air dry condition, stressing a significant role of sucrose in maintaing viablity and germinabilty during all dispersal period.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信