ProtoplasmaPub Date : 2025-05-01Epub Date: 2024-12-11DOI: 10.1007/s00709-024-02015-z
C Brandoli, A Mortada, C Todeschini, C Siniscalco, E Sgarbi
{"title":"The role of sucrose in maintaining pollen viability and germinability in Corylus avellana L.: a possible strategy to cope with climate variability.","authors":"C Brandoli, A Mortada, C Todeschini, C Siniscalco, E Sgarbi","doi":"10.1007/s00709-024-02015-z","DOIUrl":"10.1007/s00709-024-02015-z","url":null,"abstract":"<p><p>In this work, we propose a possible correlation between carbohydrate content in hazelnut pollen (wild type) and viability/germinability, also in a perspective of adaptation to climate variability. Samples from four different cultivation fields in Italy showed values of pollen viability characterized by high levels, ranging between 77.3 and 98.4% and a unique trend during the flowering period for each accession. When subjected to dehydration in controlled environment, pollen reduced the levels of viability to almost zero but recovered the initial values when rehydrated. The presence of anomalous pollen was found to be not significant, always below 4% in all accessions. The analysis on starch content gave negative results both when it was determined biochemically and detected by histological staining. Sucrose content resulted always higher than glucose and fructose in all the accessions analyzed. Its concentration throughout the dispersal phases reflected the trend of both pollen viability and germinability. These data seem to suggest a direct involvement of sucrose in the protection of plasma membranes from dehydration and the maintenance of pollen viability and germinability. This study demonstrates the sensitivity of hazelnut pollen to climatic fluctuations, particularly to air dry condition, stressing a significant role of sucrose in maintaing viablity and germinabilty during all dispersal period.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"545-561"},"PeriodicalIF":2.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142813779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ProtoplasmaPub Date : 2025-05-01Epub Date: 2025-01-10DOI: 10.1007/s00709-024-02022-0
Huizhen Yang, Yan Yuan, Xinying Liu, Yong Du, Zhou Li
{"title":"Phytohormonal homeostasis, chloroplast stability, and heat shock transcription pathways related to the adaptability of creeping bentgrass species to heat stress.","authors":"Huizhen Yang, Yan Yuan, Xinying Liu, Yong Du, Zhou Li","doi":"10.1007/s00709-024-02022-0","DOIUrl":"10.1007/s00709-024-02022-0","url":null,"abstract":"<p><p>Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes. The results showed that 18 different genotypes had different heat tolerance during summer months of 2021 and 2022. Among them, 13 M was identified as the best heat-tolerant cultivar based on the subordinate function values analysis of five physiological indicators. Under controlled growth conditions, heat stress significantly inhibited photosynthetic capacity and also accelerated oxidative damage and chlorophyll (Chl) degradation in both heat-tolerant 13 M and heat-sensitive PA4. However, as compared with heat-sensitive PA4, 13 M maintained significantly higher net photosynthetic rate, water use efficiency, and total antioxidant capacity as well as less Chl degradation and damage to chloroplast ultrastructure. Significantly higher contents of abscisic acid, cytokinin, gibberellin, and polyamines (spermine, spermidine, and putrescine) were also detected in 13 M than that in PA4 in the later stage of heat stress, but 13 M exhibited significantly lower indoleacetic acid content than PA4 during heat stress. In addition, heat-upregulated genes involved in heat shock transcriptional pathways were more pronounced in 13 M than in PA4. These findings indicated that better heat tolerance of 13 M could be related to more stable Chl metabolism, better photosynthetic and antioxidant capacities, endogenous hormonal homeostasis, and more effective heat shock transcriptional pathway. 13 M is more appropriate for planting in transitional and subtropical zones instead of widely used PA4.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"649-665"},"PeriodicalIF":2.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142966536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ProtoplasmaPub Date : 2025-05-01Epub Date: 2025-01-04DOI: 10.1007/s00709-024-02027-9
Weslane Silva Noronha, Renan Dos Santos Araújo, Gustavo Ferreira Martins
{"title":"Antennal sensilla variability among castes and sexes in the leaf-cutter ant Acromyrmex subterraneus subterraneus.","authors":"Weslane Silva Noronha, Renan Dos Santos Araújo, Gustavo Ferreira Martins","doi":"10.1007/s00709-024-02027-9","DOIUrl":"10.1007/s00709-024-02027-9","url":null,"abstract":"<p><p>Insect antennae play a crucial role in communication, acting as receptors for both chemical and physical cues. This sensory reception is facilitated by specialized cuticular structures known as sensilla, which exhibit diverse morphologies and functions. In ants, caste polymorphism and sexual dimorphism manifest in antennal structure. This study characterized and compared the antennal sensilla across different castes (major and minor workers, and queens) and sexes of the leaf-cutter ant Acromyrmex subterraneus subterraneus, an important agricultural pest, using scanning electron microscopy. The lengths of the scape and pedicel were greater in major workers and queens compared to other classes of individuals (i.e., minor workers and males). Sensillum numbers were significantly higher for these two female classes than for minor workers and tended to be higher than for males. In addition, various types of sensilla were identified, including chaetic types I, II, and III, trichoid I and II, basiconic, ampullaceous, and coeloconic. Chaetic sensilla were found to be the most abundant in all classes of individuals studied. Overall, similar types of sensilla were found in females (major, minor, queen) and males. The differences in the presence, absence, and number of antennal sensilla were analyzed in relation to their functional roles across the studied groups.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"609-618"},"PeriodicalIF":2.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ProtoplasmaPub Date : 2025-05-01Epub Date: 2025-01-14DOI: 10.1007/s00709-024-02028-8
Daniel M Martínez-Quezada, Alicia Rojas-Leal, José Luis Villaseñor, Teresa Terrazas
{"title":"Structural considerations and differences between leaf canals and secretory cavities in Asteraceae.","authors":"Daniel M Martínez-Quezada, Alicia Rojas-Leal, José Luis Villaseñor, Teresa Terrazas","doi":"10.1007/s00709-024-02028-8","DOIUrl":"10.1007/s00709-024-02028-8","url":null,"abstract":"<p><p>Secretory canals are distributed among seed plants, and their diversity is concentrated in many families of angiosperms, while other internal secretory structures such as secretory cavities have been identified only in Rutaceae, Myrtaceae, and Asteraceae. Identifying and recognizing these two types of secretory structures has been complicated, mainly due to their structural similarities. In this study, the ontogeny of canals and secretory cavities in two species of Asteraceae are described and compared, to understand the structural differences between them and allow the establishment of more appropriate homology hypotheses. Leaves of Bidens odorata and Tagetes tenuifolia in different stages of development, including the apex of the stems, were collected. The samples were processed using the methacrylate technique, and longitudinal and transverse sections were made. The development of both, canals and secretory cavities, is schizogenous, in contrast to what was previously reported for other families such as Rutaceae, where they are reported as lysigenous. In Asteraceae, canals originate from cells of the procambium while cavities originate from cells of the ground meristem. The structural and developmental similarities between both types of secretory structures allow us to infer that they have a close evolutionary origin. Canals and secretory cavities in Asteraceae can be differentiated based on the number of strata of secretory epithelium and sheath, the modifications of epidermal cells and mesophyll, and the type of promeristem that gives rise to them. Probably extravascular canals give rise to cavities in leaves of Asteraceae and probably in other plant families.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"707-720"},"PeriodicalIF":2.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12018624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142979795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ProtoplasmaPub Date : 2025-05-01Epub Date: 2025-04-09DOI: 10.1007/s00709-025-02066-w
Peter Nick
{"title":"Protists-the dark matter of eukaryotic evolution.","authors":"Peter Nick","doi":"10.1007/s00709-025-02066-w","DOIUrl":"10.1007/s00709-025-02066-w","url":null,"abstract":"","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"431-433"},"PeriodicalIF":2.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12018496/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143812163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-frequency shoot regeneration, assessment of genetic fidelity, and histochemical analysis of forskolin production in Coleus forskohlii Briq.","authors":"Monisha Mitra, Anamika Das, Mansour Ghorbanpour, Sonia Malik, Nirmal Mandal","doi":"10.1007/s00709-024-02004-2","DOIUrl":"10.1007/s00709-024-02004-2","url":null,"abstract":"<p><p>Forskolin, a diterpenoid found in the roots of Coleus forskohlii, has generated significant interest in the medical field due to its various therapeutic uses. This study aimed to establish an effective system for regenerating C. forskohlii plants, ensuring a year-round supply of plant material and forskolin production. We tested different concentrations of cytokinins, either alone or combined with auxin, to see their impact on shoot multiplication and growth. We found that a medium supplemented with 1.5 mg L<sup>-1</sup> of meta-topolin (mT) resulted in the highest number of shoots (~ 12.66) and leaves (~ 20) within about 5 days. When mT (1 mg L<sup>-1</sup>) was combined with a low amount of auxin (0.05 mg L<sup>-1</sup> NAA), we obtained an even greater number of leaves (~ 23). The shoot regeneration capacity was consistent over five subculture passages, showing minimal variation in mean shoot length and number. During acclimatization, around 91% of the plantlets grown in vermiculite + sand survived. The photosynthetic pigment concentration in the plantlets modestly increased in the first 10 days and reached its highest level after 30 days. Genetic fidelity assays using inter simple sequence repeats (ISSRs) confirmed the similarity between the in vitro derived plantlets and the mother plant. Micro-morphological features of in vitro and ex-vitro acclimated plantlets also matched those of the mother plant, further confirming genetic accuracy. Histochemical staining with vanillin confirmed the presence of forskolin in the in vitro roots, indicated by the violet coloration in the cells. Forskolin quantification was also validated by HPLC where in vitro derived roots were documented to undergo an almost ~ 1.8-fold in comparison to that of the mother plant. This established protocol can effectively address resource scarcity for commercial-scale forskolin production and sustainable conservation techniques.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"435-454"},"PeriodicalIF":2.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ProtoplasmaPub Date : 2025-05-01Epub Date: 2024-12-27DOI: 10.1007/s00709-024-02024-y
Pavel Safonov, Vadim Khaitov, Olga Palii, Sergei Skarlato, Mariia Berdieva
{"title":"Effects of nocodazole and latrunculin B on locomotion of amoeboid cells of Rhizochromulina sp. strain B44 (Heterokontophyta, Dictyochophyceae).","authors":"Pavel Safonov, Vadim Khaitov, Olga Palii, Sergei Skarlato, Mariia Berdieva","doi":"10.1007/s00709-024-02024-y","DOIUrl":"10.1007/s00709-024-02024-y","url":null,"abstract":"<p><p>Rhizochromulina is a genus of unicellular dictyochophycean algae (Heterokontophyta), comprising a single species R. marina and numerous strains. Recently, we described the first arctic rhizochromuline-Rhizochromulina sp. strain B44. Amoeboid cells of this algae are able to transform into flagellates, and this transition can be triggered by prolonged mechanical disturbance. Thin branching pseudopodia of the neighboring rhizochromuline cells fuse to form a meroplasmodium. The pseudopodia contain microtubules, but do not contain actin microfilaments; actin forms the cytoplasmic cytoskeleton and extends only to the bases of the pseudopodia. Microtubule-driven pseudopodia are characteristic to a plethora of eukaryotes, but the role of microtubular and actin cytoskeleton in locomotion of these organisms remains poorly understood. We conducted a series of experiments where amoeboid cells of Rhizochromulina sp. B44 were treated with either 10 µM nocodazole, 10 µM latrunculin B, or both drugs simultaneously. Cellular locomotion was captured on camera, tracked, and then analyzed with the help of the generalized additive mixed model. The obtained results indicate that both drugs, when applied separately, decrease the motility of the studied cells. Unexpectedly, the combined treatment had the opposite effect, as the cells became more motile. The analysis also revealed a non-linear pattern of relationship between motility of amoeboid cells of rhizochromulines and density of their population.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"585-594"},"PeriodicalIF":2.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142897101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ProtoplasmaPub Date : 2025-05-01Epub Date: 2025-01-02DOI: 10.1007/s00709-024-02025-x
Elena Sabaneyeva, Ekaterina Kursacheva, Galina Vizichkanich, Dmitrii Lebedev, Natalia Lebedeva
{"title":"Rhodotorula mucilaginosa: a new potential human pathogen found in the ciliate Paramecium bursaria.","authors":"Elena Sabaneyeva, Ekaterina Kursacheva, Galina Vizichkanich, Dmitrii Lebedev, Natalia Lebedeva","doi":"10.1007/s00709-024-02025-x","DOIUrl":"10.1007/s00709-024-02025-x","url":null,"abstract":"<p><p>Ciliates often form symbiotic associations with other microorganisms, both prokaryotic and eukaryotic. We are now starting to rediscover the symbiotic systems recorded before molecular analysis became available. Here, we provide a morphological and molecular characterization of a symbiotic association between the ciliate Paramecium tritobursaria and the yeast Rhodotorula mucilaginosa (syn. Rhodotorula rubra) isolated from a natural population. This symbiotic system demonstrates certain similarities with the symbiotic system formed by P. bursaria and its conventional endosymbionts, the zoochlorellae. Experimental infections of the endosymbiont-free P. tritobursaria and Paramecium deuterobursaria cell lines with R. mucilaginosa demonstrated that the yeast infectivity is concentration-dependent, with ciliates digesting part of the yeast cells. The endosymbiotic yeast may serve as a food reserve, providing starvation stress tolerance to the host. Since R. mucilaginosa is currently regarded as a pathogen causing opportunistic infections in immunocompromised humans, our finding gives further support to the vision that ciliates can harbor potential human pathogens and can be a vector for their dissemination.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"595-607"},"PeriodicalIF":2.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142914816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ProtoplasmaPub Date : 2025-05-01Epub Date: 2025-01-11DOI: 10.1007/s00709-024-02021-1
Nurcan Özyurt Koçakoğlu, Doğan Erhan Ersoy, Hicret Arslan, Selami Candan
{"title":"The anatomy and histology of the midgut and Malpighian tubules of Copris felschei Reitter, 1892 (Coleoptera: Scarabaeidae).","authors":"Nurcan Özyurt Koçakoğlu, Doğan Erhan Ersoy, Hicret Arslan, Selami Candan","doi":"10.1007/s00709-024-02021-1","DOIUrl":"10.1007/s00709-024-02021-1","url":null,"abstract":"<p><p>Copris are part of the Scarabaeidae family of Coleoptera. Copris are dung beetles or coprophagous beetles. These insects are called tunnelers because they excavate channels in the substrate. They use dead organisms and non-living organic compounds as a nutrient source. By breaking down dead matter, they provide nutrients that are important to the environment and necessary for the survival of other organisms. No studies have yet examined the midgut structure and Malpighian tubules of Copris. Therefore, this study investigated the histo-anatomical structure of the midgut and Malpighian tubules of Copris felschei Reitter, 1892 (Coleoptera: Scarabaeidae) using light and scanning electron microscopy (SEM) in detail. The midgut of C. felschei represents the largest part of the alimentary canal. Muscle layers and a monolayer of cylindrical epithelium surround the midgut wall. A peritrophic membrane envelops food in the midgut lumen, and crystals were observed within the lumen. The surface of the midgut has regenerative crypts and tracheae. The Malpighian tubules are arranged in two pairs and connect proximally between the midgut and hindgut. The Malpighian tubules are composed of a single layer of cuboidal epithelium. Numerous balloon-like tracheae were observed interspersed between the midgut and Malpighian tubules. Light and SEM images of the tracheae reveal a spongy structure with hollow chambers. These findings are anticipated to advance future research and deepen our understanding of the alimentary canal in Coleoptera, particularly within the Scarabaeidae family.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"683-693"},"PeriodicalIF":2.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12018526/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142966542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The ability of low levels of elevated ozone to change the growth and phytochemical constituents of a medicinal plant Andrographis paniculata (Burm. f.) Nees.","authors":"Naushad Ansari, Durgesh Singh Yadav, Priyanka Singh, Madhoolika Agrawal, Shashi Bhushan Agrawal","doi":"10.1007/s00709-024-02011-3","DOIUrl":"10.1007/s00709-024-02011-3","url":null,"abstract":"<p><p>Ground-level ozone (O<sub>3</sub>) is well recognized as a secondary air pollutant with detrimental effects on plant growth and biochemistry. In a field study, Andrographis paniculata (King of Bitter) was exposed to ambient O<sub>3</sub> and elevated O<sub>3</sub> (AO + 20 ppb) at three growth stages [45, 90, and 135 days after treatment, (DAT)] using open-top chambers. Elevated O<sub>3</sub> stress negatively impacted plant growth, increased cell damage, and induced foliar injuries. However, elevated O<sub>3</sub> also boosted antioxidant production such as proline, phenol, and enzymatic antioxidants, as well as certain secondary metabolites such as tannins, phytosterols, saponins, and alkaloids. This may enhance the plant's medicinal properties, including compounds limonene dioxide, phytol, palmitic acid, and androstadiene. While, certain metabolites like Citronellol, Khusenol, and tocopherol displayed an adverse reaction under elevated O<sub>3</sub> exposure. The novel detection of acrodiene, squalene, and neophytadiene under O<sub>3</sub> stress emphasizes their medicinal significance. Notably, an important bioactive compound andrographolide in A. paniculata showed increased synthesis under elevated O<sub>3</sub> at 45 and 90 DAT, suggesting that O<sub>3</sub> exposure could enhance the plant's pharmaceutical value.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"455-473"},"PeriodicalIF":2.5,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142710915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}