{"title":"A note on new weighted geometric inequalities for hypersurfaces in ℝⁿ","authors":"Jie Wu","doi":"10.1090/proc/16875","DOIUrl":"https://doi.org/10.1090/proc/16875","url":null,"abstract":"<p>In this note, we prove a family of sharp weighed inequalities which involve weighted <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-th mean curvature integral and two distinct quermassintegrals for closed hypersurfaces in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This inequality generalizes the corresponding result of Wei and Zhou [Bull. Lond. Math. Soc. 55 (2023), pp. 263–281] where their proof is based on earlier results of Kwong-Miao [Pacific J. Math. 267 (2014), pp. 417–422; Commun. Contemp. Math. 17 (2015), p. 1550014]. Here we present a proof which does not rely on Kwong-Miao’s results.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"10 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The realizability problem as a special case of the infinite-dimensional truncated moment problem","authors":"Raúl E. Curto, Maria Infusino","doi":"10.1090/proc/16710","DOIUrl":"https://doi.org/10.1090/proc/16710","url":null,"abstract":"","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"21 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new lower bound for the number of conjugacy classes","authors":"Burcu Çınarcı, Thomas Keller","doi":"10.1090/proc/16876","DOIUrl":"https://doi.org/10.1090/proc/16876","url":null,"abstract":"<p>In 2000, Héthelyi and Külshammer [Bull. London Math. Soc. 32 (2000), pp. 668–672] proposed that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite group, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a prime dividing the group order, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k left-parenthesis upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the number of conjugacy classes of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k left-parenthesis upper G right-parenthesis greater-than-or-equal-to 2 StartRoot p minus 1 EndRoot\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> <mml:msqrt> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:msqrt> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k(G)geq 2sqrt {p-1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and they proved this conjecture for solvable <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and showed that it is sharp for those primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartRoot p minus 1 EndRoot\"> <mml:semantics> <mml:msqrt> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:msqrt> <mml:annotation encoding=\"application/x-tex\">sqrt {p-1}</mml:annotation> </mml:semantics> </mml:math> </inl","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"285 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monotonicity rules for the ratio of two function series and two integral transforms","authors":"Zhong-Xuan Mao, Jing-Feng Tian","doi":"10.1090/proc/16728","DOIUrl":"https://doi.org/10.1090/proc/16728","url":null,"abstract":"<p>In this paper, we investigate the monotonicity of the functions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t right-arrow from bar StartFraction sigma-summation Underscript k equals 0 Overscript normal infinity Endscripts a Subscript k Baseline w Subscript k Baseline left-parenthesis t right-parenthesis Over sigma-summation Underscript k equals 0 Overscript normal infinity Endscripts b Subscript k Baseline w Subscript k Baseline left-parenthesis t right-parenthesis EndFraction\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo> <mml:mfrac> <mml:mrow> <mml:munderover> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:munderover> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mrow> <mml:munderover> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:munderover> <mml:msub> <mml:mi>b</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">t mapsto frac {sum _{k=0}^infty a_k w_k(t)}{sum _{k=0}^infty b_k w_k(t)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x right-arrow from bar StartFraction integral Subscript alpha Superscript beta Baseline f left-parenthesis t right-parenthesis w left-parenthesis t comma x right-parenthesis normal d t Over integral Subscript alpha Superscript beta Baseline g left-parenthesis t right-parenthesis w left-parenthesis t comma x right-parenthesis normal d t EndFraction\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo> <mml:mfrac> <mml:mrow> <mml:msubsup> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msubsup> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>w</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">d</mml:mi> </mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:msubsup> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msubsup> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"46 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the canonicity of the singularities of quotients of the Fulton-MacPherson compactification","authors":"Sophie Kriz","doi":"10.1090/proc/16859","DOIUrl":"https://doi.org/10.1090/proc/16859","url":null,"abstract":"<p>We prove that quotients of the Fulton-MacPherson compactification of configuration spaces of smooth projective varieties of dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by permutation groups have canonical singularities.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"58 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The strong Lefschetz property of Gorenstein algebras generated by relative invariants","authors":"Takahiro Nagaoka, Akihito Wachi","doi":"10.1090/proc/16870","DOIUrl":"https://doi.org/10.1090/proc/16870","url":null,"abstract":"<p>We prove the strong Lefschetz property for Artinian Gorenstein algebras generated by the relative invariants of prehomogeneous vector spaces of commutative parabolic type.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"43 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global smooth solutions in a chemotaxis system modeling immune response to a solid tumor","authors":"Youshan Tao, Michael Winkler","doi":"10.1090/proc/16867","DOIUrl":"https://doi.org/10.1090/proc/16867","url":null,"abstract":"<p>This manuscript studies a no-flux initial-boundary value problem for a four-component chemotaxis system that has been proposed as a model for the response of cytotoxic T-lymphocytes to a solid tumor. In contrast to classical Keller-Segel type situations focusing on two-component interplay of chemotaxing populations with a signal directly secreted by themselves, the presently considered system accounts for a certain indirect mechanism of attractant evolution. Despite the presence of a zero-order exciting nonlinearity of quadratic type that forms a core mathematical feature of the model, the manuscript asserts the global existence of classical solutions for initial data of arbitrary size in three-dimensional domains.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"26 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bounds for syzygies of monomial curves","authors":"Giulio Caviglia, Alessio Moscariello, Alessio Sammartano","doi":"10.1090/proc/16862","DOIUrl":"https://doi.org/10.1090/proc/16862","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma subset-of-or-equal-to double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:mo>⊆</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Gamma subseteq mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a numerical semigroup. In this paper, we prove an upper bound for the Betti numbers of the semigroup ring of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which depends only on the width of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, the difference between the largest and the smallest generator of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this way, we make progress towards a conjecture of Herzog and Stamate [J. Algebra 418 (2014), pp. 8–28]. Moreover, for 4-generated numerical semigroups, the first significant open case, we prove the Herzog-Stamate bound for all but finitely many values of the width.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"81 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danhua Jiang, Shiyuan Cheng, Yun Li, Zhi-Cheng Wang
{"title":"Global dynamics of a nonlocal reaction-diffusion-advection two-species phytoplankton model","authors":"Danhua Jiang, Shiyuan Cheng, Yun Li, Zhi-Cheng Wang","doi":"10.1090/proc/16873","DOIUrl":"https://doi.org/10.1090/proc/16873","url":null,"abstract":"<p>We continue our study on the global dynamics of a non- local reaction-diffusion-advection system modeling the population dynamics of two competing phytoplankton species in a eutrophic environment, where the species depend solely on light for their metabolism. In our previous works, we proved that system (1.1) is a strongly monotone dynamical system with respect to a non-standard cone, and some competitive exclusion results were obtained. In this paper, we aim to demonstrate the existence of coexistence steady state as well as competitive exclusion. Our results highlight that advection in dispersal strategy can lead to transitions between various competitive outcomes.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"141 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spectral bounds for periodic Jacobi matrices","authors":"Burak Hati̇noğlu","doi":"10.1090/proc/16874","DOIUrl":"https://doi.org/10.1090/proc/16874","url":null,"abstract":"<p>We consider periodic Jacobi operators and obtain upper and lower estimates on the sizes of the spectral bands. Our proofs are based on estimates on the logarithmic capacities and connections between the Chebyshev polynomials and logarithmic capacity of compact subsets of the real line.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"43 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}