Proceedings of the American Mathematical Society最新文献

筛选
英文 中文
A note on new weighted geometric inequalities for hypersurfaces in ℝⁿ 关于ℝⁿ中超曲面的新加权几何不等式的说明
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-04-10 DOI: 10.1090/proc/16875
Jie Wu
{"title":"A note on new weighted geometric inequalities for hypersurfaces in ℝⁿ","authors":"Jie Wu","doi":"10.1090/proc/16875","DOIUrl":"https://doi.org/10.1090/proc/16875","url":null,"abstract":"<p>In this note, we prove a family of sharp weighed inequalities which involve weighted <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-th mean curvature integral and two distinct quermassintegrals for closed hypersurfaces in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This inequality generalizes the corresponding result of Wei and Zhou [Bull. Lond. Math. Soc. 55 (2023), pp. 263–281] where their proof is based on earlier results of Kwong-Miao [Pacific J. Math. 267 (2014), pp. 417–422; Commun. Contemp. Math. 17 (2015), p. 1550014]. Here we present a proof which does not rely on Kwong-Miao’s results.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"10 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The realizability problem as a special case of the infinite-dimensional truncated moment problem 作为无穷维截断矩问题特例的可实现性问题
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-04-05 DOI: 10.1090/proc/16710
Raúl E. Curto, Maria Infusino
{"title":"The realizability problem as a special case of the infinite-dimensional truncated moment problem","authors":"Raúl E. Curto, Maria Infusino","doi":"10.1090/proc/16710","DOIUrl":"https://doi.org/10.1090/proc/16710","url":null,"abstract":"","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"21 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new lower bound for the number of conjugacy classes 共轭类数的新下限
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-04-03 DOI: 10.1090/proc/16876
Burcu Çınarcı, Thomas Keller
{"title":"A new lower bound for the number of conjugacy classes","authors":"Burcu Çınarcı, Thomas Keller","doi":"10.1090/proc/16876","DOIUrl":"https://doi.org/10.1090/proc/16876","url":null,"abstract":"&lt;p&gt;In 2000, Héthelyi and Külshammer [Bull. London Math. Soc. 32 (2000), pp. 668–672] proposed that if &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;G&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; is a finite group, &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;p&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; is a prime dividing the group order, and &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k left-parenthesis upper G right-parenthesis\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;k(G)&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; is the number of conjugacy classes of &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;G&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, then &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k left-parenthesis upper G right-parenthesis greater-than-or-equal-to 2 StartRoot p minus 1 EndRoot\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:mo&gt;≥&lt;/mml:mo&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;mml:msqrt&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:mo&gt;−&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:msqrt&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;k(G)geq 2sqrt {p-1}&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt;, and they proved this conjecture for solvable &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;G&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;G&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; and showed that it is sharp for those primes &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"&gt; &lt;mml:semantics&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;p&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; for which &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartRoot p minus 1 EndRoot\"&gt; &lt;mml:semantics&gt; &lt;mml:msqrt&gt; &lt;mml:mi&gt;p&lt;/mml:mi&gt; &lt;mml:mo&gt;−&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:msqrt&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;sqrt {p-1}&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inl","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"285 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monotonicity rules for the ratio of two function series and two integral transforms 两个函数序列之比和两个积分变换的单调性规则
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-04-03 DOI: 10.1090/proc/16728
Zhong-Xuan Mao, Jing-Feng Tian
{"title":"Monotonicity rules for the ratio of two function series and two integral transforms","authors":"Zhong-Xuan Mao, Jing-Feng Tian","doi":"10.1090/proc/16728","DOIUrl":"https://doi.org/10.1090/proc/16728","url":null,"abstract":"&lt;p&gt;In this paper, we investigate the monotonicity of the functions &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t right-arrow from bar StartFraction sigma-summation Underscript k equals 0 Overscript normal infinity Endscripts a Subscript k Baseline w Subscript k Baseline left-parenthesis t right-parenthesis Over sigma-summation Underscript k equals 0 Overscript normal infinity Endscripts b Subscript k Baseline w Subscript k Baseline left-parenthesis t right-parenthesis EndFraction\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;t&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;↦&lt;!-- ↦ --&gt;&lt;/mml:mo&gt; &lt;mml:mfrac&gt; &lt;mml:mrow&gt; &lt;mml:munderover&gt; &lt;mml:mo&gt;∑&lt;!-- ∑ --&gt;&lt;/mml:mo&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;mml:mi mathvariant=\"normal\"&gt;∞&lt;!-- ∞ --&gt;&lt;/mml:mi&gt; &lt;/mml:munderover&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;a&lt;/mml:mi&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;w&lt;/mml:mi&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;t&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:munderover&gt; &lt;mml:mo&gt;∑&lt;!-- ∑ --&gt;&lt;/mml:mo&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;mml:mi mathvariant=\"normal\"&gt;∞&lt;!-- ∞ --&gt;&lt;/mml:mi&gt; &lt;/mml:munderover&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;b&lt;/mml:mi&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:msub&gt; &lt;mml:mi&gt;w&lt;/mml:mi&gt; &lt;mml:mi&gt;k&lt;/mml:mi&gt; &lt;/mml:msub&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;t&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:mfrac&gt; &lt;/mml:mrow&gt; &lt;mml:annotation encoding=\"application/x-tex\"&gt;t mapsto frac {sum _{k=0}^infty a_k w_k(t)}{sum _{k=0}^infty b_k w_k(t)}&lt;/mml:annotation&gt; &lt;/mml:semantics&gt; &lt;/mml:math&gt; &lt;/inline-formula&gt; and &lt;inline-formula content-type=\"math/mathml\"&gt; &lt;mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x right-arrow from bar StartFraction integral Subscript alpha Superscript beta Baseline f left-parenthesis t right-parenthesis w left-parenthesis t comma x right-parenthesis normal d t Over integral Subscript alpha Superscript beta Baseline g left-parenthesis t right-parenthesis w left-parenthesis t comma x right-parenthesis normal d t EndFraction\"&gt; &lt;mml:semantics&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;↦&lt;!-- ↦ --&gt;&lt;/mml:mo&gt; &lt;mml:mfrac&gt; &lt;mml:mrow&gt; &lt;mml:msubsup&gt; &lt;mml:mo&gt;∫&lt;!-- ∫ --&gt;&lt;/mml:mo&gt; &lt;mml:mi&gt;α&lt;!-- α --&gt;&lt;/mml:mi&gt; &lt;mml:mi&gt;β&lt;!-- β --&gt;&lt;/mml:mi&gt; &lt;/mml:msubsup&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;t&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:mi&gt;w&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;t&lt;/mml:mi&gt; &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;mml:mi&gt;x&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)&lt;/mml:mo&gt; &lt;mml:mrow&gt; &lt;mml:mi mathvariant=\"normal\"&gt;d&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mi&gt;t&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:msubsup&gt; &lt;mml:mo&gt;∫&lt;!-- ∫ --&gt;&lt;/mml:mo&gt; &lt;mml:mi&gt;α&lt;!-- α --&gt;&lt;/mml:mi&gt; &lt;mml:mi&gt;β&lt;!-- β --&gt;&lt;/mml:mi&gt; &lt;/mml:msubsup&gt; &lt;mml:mi&gt;g&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;(&lt;/mml:mo&gt; &lt;mml:mi&gt;t&lt;/mml:mi&gt; &lt;mml:mo stretchy=\"false\"&gt;)","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"46 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the canonicity of the singularities of quotients of the Fulton-MacPherson compactification 论富尔顿-麦克弗森紧凑化商数奇点的可控性
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-04-03 DOI: 10.1090/proc/16859
Sophie Kriz
{"title":"On the canonicity of the singularities of quotients of the Fulton-MacPherson compactification","authors":"Sophie Kriz","doi":"10.1090/proc/16859","DOIUrl":"https://doi.org/10.1090/proc/16859","url":null,"abstract":"<p>We prove that quotients of the Fulton-MacPherson compactification of configuration spaces of smooth projective varieties of dimension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by permutation groups have canonical singularities.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"58 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The strong Lefschetz property of Gorenstein algebras generated by relative invariants 相对不变式生成的戈伦斯坦代数的强列夫谢茨性质
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-04-03 DOI: 10.1090/proc/16870
Takahiro Nagaoka, Akihito Wachi
{"title":"The strong Lefschetz property of Gorenstein algebras generated by relative invariants","authors":"Takahiro Nagaoka, Akihito Wachi","doi":"10.1090/proc/16870","DOIUrl":"https://doi.org/10.1090/proc/16870","url":null,"abstract":"<p>We prove the strong Lefschetz property for Artinian Gorenstein algebras generated by the relative invariants of prehomogeneous vector spaces of commutative parabolic type.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"43 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global smooth solutions in a chemotaxis system modeling immune response to a solid tumor 模拟实体瘤免疫反应的趋化系统中的全局平滑解
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-04-03 DOI: 10.1090/proc/16867
Youshan Tao, Michael Winkler
{"title":"Global smooth solutions in a chemotaxis system modeling immune response to a solid tumor","authors":"Youshan Tao, Michael Winkler","doi":"10.1090/proc/16867","DOIUrl":"https://doi.org/10.1090/proc/16867","url":null,"abstract":"<p>This manuscript studies a no-flux initial-boundary value problem for a four-component chemotaxis system that has been proposed as a model for the response of cytotoxic T-lymphocytes to a solid tumor. In contrast to classical Keller-Segel type situations focusing on two-component interplay of chemotaxing populations with a signal directly secreted by themselves, the presently considered system accounts for a certain indirect mechanism of attractant evolution. Despite the presence of a zero-order exciting nonlinearity of quadratic type that forms a core mathematical feature of the model, the manuscript asserts the global existence of classical solutions for initial data of arbitrary size in three-dimensional domains.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"26 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounds for syzygies of monomial curves 单项式曲线对称性的界限
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-04-03 DOI: 10.1090/proc/16862
Giulio Caviglia, Alessio Moscariello, Alessio Sammartano
{"title":"Bounds for syzygies of monomial curves","authors":"Giulio Caviglia, Alessio Moscariello, Alessio Sammartano","doi":"10.1090/proc/16862","DOIUrl":"https://doi.org/10.1090/proc/16862","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma subset-of-or-equal-to double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:mo>⊆</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">Gamma subseteq mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a numerical semigroup. In this paper, we prove an upper bound for the Betti numbers of the semigroup ring of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which depends only on the width of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, the difference between the largest and the smallest generator of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this way, we make progress towards a conjecture of Herzog and Stamate [J. Algebra 418 (2014), pp. 8–28]. Moreover, for 4-generated numerical semigroups, the first significant open case, we prove the Herzog-Stamate bound for all but finitely many values of the width.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"81 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141780181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global dynamics of a nonlocal reaction-diffusion-advection two-species phytoplankton model 非局部反应-扩散-平流双物种浮游植物模型的全球动力学研究
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-04-03 DOI: 10.1090/proc/16873
Danhua Jiang, Shiyuan Cheng, Yun Li, Zhi-Cheng Wang
{"title":"Global dynamics of a nonlocal reaction-diffusion-advection two-species phytoplankton model","authors":"Danhua Jiang, Shiyuan Cheng, Yun Li, Zhi-Cheng Wang","doi":"10.1090/proc/16873","DOIUrl":"https://doi.org/10.1090/proc/16873","url":null,"abstract":"<p>We continue our study on the global dynamics of a non- local reaction-diffusion-advection system modeling the population dynamics of two competing phytoplankton species in a eutrophic environment, where the species depend solely on light for their metabolism. In our previous works, we proved that system (1.1) is a strongly monotone dynamical system with respect to a non-standard cone, and some competitive exclusion results were obtained. In this paper, we aim to demonstrate the existence of coexistence steady state as well as competitive exclusion. Our results highlight that advection in dispersal strategy can lead to transitions between various competitive outcomes.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"141 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral bounds for periodic Jacobi matrices 周期性雅可比矩阵的谱边界
IF 1 3区 数学
Proceedings of the American Mathematical Society Pub Date : 2024-03-29 DOI: 10.1090/proc/16874
Burak Hati̇noğlu
{"title":"Spectral bounds for periodic Jacobi matrices","authors":"Burak Hati̇noğlu","doi":"10.1090/proc/16874","DOIUrl":"https://doi.org/10.1090/proc/16874","url":null,"abstract":"<p>We consider periodic Jacobi operators and obtain upper and lower estimates on the sizes of the spectral bands. Our proofs are based on estimates on the logarithmic capacities and connections between the Chebyshev polynomials and logarithmic capacity of compact subsets of the real line.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"43 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信