共轭类数的新下限

IF 0.8 3区 数学 Q2 MATHEMATICS
Burcu Çınarcı, Thomas Keller
{"title":"共轭类数的新下限","authors":"Burcu Çınarcı, Thomas Keller","doi":"10.1090/proc/16876","DOIUrl":null,"url":null,"abstract":"<p>In 2000, Héthelyi and Külshammer [Bull. London Math. Soc. 32 (2000), pp. 668–672] proposed that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite group, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a prime dividing the group order, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k left-parenthesis upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the number of conjugacy classes of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k left-parenthesis upper G right-parenthesis greater-than-or-equal-to 2 StartRoot p minus 1 EndRoot\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> <mml:msqrt> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:msqrt> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k(G)\\geq 2\\sqrt {p-1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and they proved this conjecture for solvable <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and showed that it is sharp for those primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartRoot p minus 1 EndRoot\"> <mml:semantics> <mml:msqrt> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:msqrt> <mml:annotation encoding=\"application/x-tex\">\\sqrt {p-1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an integer. This initiated a flurry of activity, leading to many generalizations and variations of the result; in particular, today the conjecture is known to be true for all finite groups. In this note, we put forward a natural new and stronger conjecture, which is sharp for all primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and we prove it for solvable groups, and when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is large, also for arbitrary groups.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"285 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new lower bound for the number of conjugacy classes\",\"authors\":\"Burcu Çınarcı, Thomas Keller\",\"doi\":\"10.1090/proc/16876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In 2000, Héthelyi and Külshammer [Bull. London Math. Soc. 32 (2000), pp. 668–672] proposed that if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite group, <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a prime dividing the group order, and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k left-parenthesis upper G right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">k(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the number of conjugacy classes of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k left-parenthesis upper G right-parenthesis greater-than-or-equal-to 2 StartRoot p minus 1 EndRoot\\\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> <mml:msqrt> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:msqrt> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">k(G)\\\\geq 2\\\\sqrt {p-1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and they proved this conjecture for solvable <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper G\\\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and showed that it is sharp for those primes <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartRoot p minus 1 EndRoot\\\"> <mml:semantics> <mml:msqrt> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:msqrt> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\sqrt {p-1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an integer. This initiated a flurry of activity, leading to many generalizations and variations of the result; in particular, today the conjecture is known to be true for all finite groups. In this note, we put forward a natural new and stronger conjecture, which is sharp for all primes <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and we prove it for solvable groups, and when <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is large, also for arbitrary groups.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"285 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16876\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16876","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

2000 年,Héthelyi 和 Külshammer [Bull.668-672] 提出,如果 G G 是有限群,p p 是划分群阶的素数,而 k ( G ) k(G) 是 G G 的共轭类数,那么 k ( G ) ≥ 2 p - 1 k(G)\geq 2\sqrt {p-1} ,他们对可解的 G G 证明了这一猜想,并证明对于那些 p - 1 \sqrt {p-1} 是整数的素数 p p,这一猜想是尖锐的。这引发了一系列的活动,导致了对这一结果的许多概括和变化;特别是,如今人们知道这一猜想对所有有限群都是真的。在本笔记中,我们提出了一个自然的、更强的新猜想,它对所有素数 p p 都是尖锐的,我们证明了它对可解群的适用性,而且当 p p 较大时,也适用于任意群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new lower bound for the number of conjugacy classes

In 2000, Héthelyi and Külshammer [Bull. London Math. Soc. 32 (2000), pp. 668–672] proposed that if G G is a finite group, p p is a prime dividing the group order, and k ( G ) k(G) is the number of conjugacy classes of G G , then k ( G ) 2 p 1 k(G)\geq 2\sqrt {p-1} , and they proved this conjecture for solvable G G and showed that it is sharp for those primes p p for which p 1 \sqrt {p-1} is an integer. This initiated a flurry of activity, leading to many generalizations and variations of the result; in particular, today the conjecture is known to be true for all finite groups. In this note, we put forward a natural new and stronger conjecture, which is sharp for all primes p p , and we prove it for solvable groups, and when p p is large, also for arbitrary groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信