{"title":"A new lower bound for the number of conjugacy classes","authors":"Burcu Çınarcı, Thomas Keller","doi":"10.1090/proc/16876","DOIUrl":null,"url":null,"abstract":"<p>In 2000, Héthelyi and Külshammer [Bull. London Math. Soc. 32 (2000), pp. 668–672] proposed that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite group, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a prime dividing the group order, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k left-parenthesis upper G right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the number of conjugacy classes of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k left-parenthesis upper G right-parenthesis greater-than-or-equal-to 2 StartRoot p minus 1 EndRoot\"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> <mml:msqrt> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:msqrt> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">k(G)\\geq 2\\sqrt {p-1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and they proved this conjecture for solvable <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=\"application/x-tex\">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and showed that it is sharp for those primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartRoot p minus 1 EndRoot\"> <mml:semantics> <mml:msqrt> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:msqrt> <mml:annotation encoding=\"application/x-tex\">\\sqrt {p-1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an integer. This initiated a flurry of activity, leading to many generalizations and variations of the result; in particular, today the conjecture is known to be true for all finite groups. In this note, we put forward a natural new and stronger conjecture, which is sharp for all primes <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and we prove it for solvable groups, and when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is large, also for arbitrary groups.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"285 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16876","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In 2000, Héthelyi and Külshammer [Bull. London Math. Soc. 32 (2000), pp. 668–672] proposed that if GG is a finite group, pp is a prime dividing the group order, and k(G)k(G) is the number of conjugacy classes of GG, then k(G)≥2p−1k(G)\geq 2\sqrt {p-1}, and they proved this conjecture for solvable GG and showed that it is sharp for those primes pp for which p−1\sqrt {p-1} is an integer. This initiated a flurry of activity, leading to many generalizations and variations of the result; in particular, today the conjecture is known to be true for all finite groups. In this note, we put forward a natural new and stronger conjecture, which is sharp for all primes pp, and we prove it for solvable groups, and when pp is large, also for arbitrary groups.
2000 年,Héthelyi 和 Külshammer [Bull.668-672] 提出,如果 G G 是有限群,p p 是划分群阶的素数,而 k ( G ) k(G) 是 G G 的共轭类数,那么 k ( G ) ≥ 2 p - 1 k(G)\geq 2\sqrt {p-1} ,他们对可解的 G G 证明了这一猜想,并证明对于那些 p - 1 \sqrt {p-1} 是整数的素数 p p,这一猜想是尖锐的。这引发了一系列的活动,导致了对这一结果的许多概括和变化;特别是,如今人们知道这一猜想对所有有限群都是真的。在本笔记中,我们提出了一个自然的、更强的新猜想,它对所有素数 p p 都是尖锐的,我们证明了它对可解群的适用性,而且当 p p 较大时,也适用于任意群。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.