单项式曲线对称性的界限

Pub Date : 2024-04-03 DOI:10.1090/proc/16862
Giulio Caviglia, Alessio Moscariello, Alessio Sammartano
{"title":"单项式曲线对称性的界限","authors":"Giulio Caviglia, Alessio Moscariello, Alessio Sammartano","doi":"10.1090/proc/16862","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma subset-of-or-equal-to double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:mo>⊆</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Gamma \\subseteq \\mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a numerical semigroup. In this paper, we prove an upper bound for the Betti numbers of the semigroup ring of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which depends only on the width of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, the difference between the largest and the smallest generator of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this way, we make progress towards a conjecture of Herzog and Stamate [J. Algebra 418 (2014), pp. 8–28]. Moreover, for 4-generated numerical semigroups, the first significant open case, we prove the Herzog-Stamate bound for all but finitely many values of the width.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds for syzygies of monomial curves\",\"authors\":\"Giulio Caviglia, Alessio Moscariello, Alessio Sammartano\",\"doi\":\"10.1090/proc/16862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma subset-of-or-equal-to double-struck upper N\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:mo>⊆</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma \\\\subseteq \\\\mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a numerical semigroup. In this paper, we prove an upper bound for the Betti numbers of the semigroup ring of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which depends only on the width of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, the difference between the largest and the smallest generator of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this way, we make progress towards a conjecture of Herzog and Stamate [J. Algebra 418 (2014), pp. 8–28]. Moreover, for 4-generated numerical semigroups, the first significant open case, we prove the Herzog-Stamate bound for all but finitely many values of the width.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 Γ ⊆ N \Gamma \subseteq \mathbb {N} 是一个数字半群。在本文中,我们证明了 Γ \Gamma 的半群环的贝蒂数的上界,它只取决于 Γ \Gamma 的宽度,即 Γ \Gamma 的最大生成器和最小生成器之间的差值。这样,我们在实现赫尔佐格和斯塔马特的猜想方面取得了进展[《代数学杂志》418 (2014),第 8-28 页]。此外,对于 4 代数值半群--第一个重要的开放情形--我们证明了赫尔佐格-斯塔马特对除有限多个宽度值之外的所有宽度值的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bounds for syzygies of monomial curves

Let Γ N \Gamma \subseteq \mathbb {N} be a numerical semigroup. In this paper, we prove an upper bound for the Betti numbers of the semigroup ring of Γ \Gamma which depends only on the width of Γ \Gamma , that is, the difference between the largest and the smallest generator of Γ \Gamma . In this way, we make progress towards a conjecture of Herzog and Stamate [J. Algebra 418 (2014), pp. 8–28]. Moreover, for 4-generated numerical semigroups, the first significant open case, we prove the Herzog-Stamate bound for all but finitely many values of the width.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信