{"title":"单项式曲线对称性的界限","authors":"Giulio Caviglia, Alessio Moscariello, Alessio Sammartano","doi":"10.1090/proc/16862","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma subset-of-or-equal-to double-struck upper N\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:mo>⊆</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Gamma \\subseteq \\mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a numerical semigroup. In this paper, we prove an upper bound for the Betti numbers of the semigroup ring of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which depends only on the width of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, the difference between the largest and the smallest generator of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Gamma\"> <mml:semantics> <mml:mi mathvariant=\"normal\">Γ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this way, we make progress towards a conjecture of Herzog and Stamate [J. Algebra 418 (2014), pp. 8–28]. Moreover, for 4-generated numerical semigroups, the first significant open case, we prove the Herzog-Stamate bound for all but finitely many values of the width.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"81 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds for syzygies of monomial curves\",\"authors\":\"Giulio Caviglia, Alessio Moscariello, Alessio Sammartano\",\"doi\":\"10.1090/proc/16862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma subset-of-or-equal-to double-struck upper N\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:mo>⊆</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">N</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma \\\\subseteq \\\\mathbb {N}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a numerical semigroup. In this paper, we prove an upper bound for the Betti numbers of the semigroup ring of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which depends only on the width of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, the difference between the largest and the smallest generator of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Gamma\\\"> <mml:semantics> <mml:mi mathvariant=\\\"normal\\\">Γ</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this way, we make progress towards a conjecture of Herzog and Stamate [J. Algebra 418 (2014), pp. 8–28]. Moreover, for 4-generated numerical semigroups, the first significant open case, we prove the Herzog-Stamate bound for all but finitely many values of the width.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16862\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16862","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let Γ⊆N\Gamma \subseteq \mathbb {N} be a numerical semigroup. In this paper, we prove an upper bound for the Betti numbers of the semigroup ring of Γ\Gamma which depends only on the width of Γ\Gamma, that is, the difference between the largest and the smallest generator of Γ\Gamma. In this way, we make progress towards a conjecture of Herzog and Stamate [J. Algebra 418 (2014), pp. 8–28]. Moreover, for 4-generated numerical semigroups, the first significant open case, we prove the Herzog-Stamate bound for all but finitely many values of the width.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.