两个函数序列之比和两个积分变换的单调性规则

IF 0.8 3区 数学 Q2 MATHEMATICS
Zhong-Xuan Mao, Jing-Feng Tian
{"title":"两个函数序列之比和两个积分变换的单调性规则","authors":"Zhong-Xuan Mao, Jing-Feng Tian","doi":"10.1090/proc/16728","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the monotonicity of the functions <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t right-arrow from bar StartFraction sigma-summation Underscript k equals 0 Overscript normal infinity Endscripts a Subscript k Baseline w Subscript k Baseline left-parenthesis t right-parenthesis Over sigma-summation Underscript k equals 0 Overscript normal infinity Endscripts b Subscript k Baseline w Subscript k Baseline left-parenthesis t right-parenthesis EndFraction\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo> <mml:mfrac> <mml:mrow> <mml:munderover> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:munderover> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:mrow> <mml:munderover> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> </mml:munderover> <mml:msub> <mml:mi>b</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">t \\mapsto \\frac {\\sum _{k=0}^\\infty a_k w_k(t)}{\\sum _{k=0}^\\infty b_k w_k(t)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x right-arrow from bar StartFraction integral Subscript alpha Superscript beta Baseline f left-parenthesis t right-parenthesis w left-parenthesis t comma x right-parenthesis normal d t Over integral Subscript alpha Superscript beta Baseline g left-parenthesis t right-parenthesis w left-parenthesis t comma x right-parenthesis normal d t EndFraction\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo> <mml:mfrac> <mml:mrow> <mml:msubsup> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msubsup> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>w</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">d</mml:mi> </mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:msubsup> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msubsup> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>w</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mi mathvariant=\"normal\">d</mml:mi> </mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x \\mapsto \\frac {\\int _\\alpha ^\\beta f(t) w(t,x) \\mathrm {d} t}{\\int _\\alpha ^\\beta g(t) w(t,x) \\mathrm {d} t}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, focusing on case where the monotonicity of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a Subscript k Baseline slash b Subscript k\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>b</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">a_k/b_k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis t right-parenthesis slash g left-parenthesis t right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(t)/g(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> change once. The results presented also provide insights into the monotonicity of the ratios of two power series, two <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper Z\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">Z</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-transforms, two discrete Laplace transforms, two discrete Mellin transforms, two Laplace transforms, and two Mellin transforms. Finally, we employ these monotonicity rules to present several applications in the realm of special functions and stochastic orders.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monotonicity rules for the ratio of two function series and two integral transforms\",\"authors\":\"Zhong-Xuan Mao, Jing-Feng Tian\",\"doi\":\"10.1090/proc/16728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the monotonicity of the functions <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"t right-arrow from bar StartFraction sigma-summation Underscript k equals 0 Overscript normal infinity Endscripts a Subscript k Baseline w Subscript k Baseline left-parenthesis t right-parenthesis Over sigma-summation Underscript k equals 0 Overscript normal infinity Endscripts b Subscript k Baseline w Subscript k Baseline left-parenthesis t right-parenthesis EndFraction\\\"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">↦<!-- ↦ --></mml:mo> <mml:mfrac> <mml:mrow> <mml:munderover> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:munderover> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:mrow> <mml:munderover> <mml:mo>∑<!-- ∑ --></mml:mo> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi> </mml:munderover> <mml:msub> <mml:mi>b</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:msub> <mml:mi>w</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">t \\\\mapsto \\\\frac {\\\\sum _{k=0}^\\\\infty a_k w_k(t)}{\\\\sum _{k=0}^\\\\infty b_k w_k(t)}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"x right-arrow from bar StartFraction integral Subscript alpha Superscript beta Baseline f left-parenthesis t right-parenthesis w left-parenthesis t comma x right-parenthesis normal d t Over integral Subscript alpha Superscript beta Baseline g left-parenthesis t right-parenthesis w left-parenthesis t comma x right-parenthesis normal d t EndFraction\\\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">↦<!-- ↦ --></mml:mo> <mml:mfrac> <mml:mrow> <mml:msubsup> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msubsup> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>w</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">d</mml:mi> </mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow> <mml:msubsup> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msubsup> <mml:mi>g</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mi>w</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"normal\\\">d</mml:mi> </mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">x \\\\mapsto \\\\frac {\\\\int _\\\\alpha ^\\\\beta f(t) w(t,x) \\\\mathrm {d} t}{\\\\int _\\\\alpha ^\\\\beta g(t) w(t,x) \\\\mathrm {d} t}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, focusing on case where the monotonicity of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"a Subscript k Baseline slash b Subscript k\\\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>k</mml:mi> </mml:msub> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:msub> <mml:mi>b</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">a_k/b_k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f left-parenthesis t right-parenthesis slash g left-parenthesis t right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>g</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">f(t)/g(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> change once. The results presented also provide insights into the monotonicity of the ratios of two power series, two <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper Z\\\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\\\"script\\\">Z</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {Z}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-transforms, two discrete Laplace transforms, two discrete Mellin transforms, two Laplace transforms, and two Mellin transforms. Finally, we employ these monotonicity rules to present several applications in the realm of special functions and stochastic orders.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16728\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16728","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中、我们研究了函数 t ↦ ∑ k = 0 ∞ a k w k ( t ) ∑ k = 0 ∞ b k w k ( t ) 的单调性。t ) t (映射到 frac {sum _{k=0}^\infty a_k w_k(t)}{sum _{k=0}^\infty b_k w_k(t)} and x ↦ ∫ α β f ( t ) w ( t 、x ) d t ∫ α β g ( t ) w ( t , x ) d t x \mapsto \frac {\int _\alpha ^\beta f(t) w(t,x) \mathrm {d} t}{\int _\alpha ^\beta g(t) w(t,x) \mathrm {d} t} ,重点是一元函数的情况。 重点关注 a k / b k a_k/b_k 和 f ( t ) / g ( t ) f(t)/g(t) 的单调性发生一次变化的情况。这些结果还为两个幂级数、两个 Z \mathcal {Z} -变换、两个离散拉普拉斯变换、两个离散梅林变换、两个拉普拉斯变换和两个梅林变换的比率的单调性提供了启示。最后,我们利用这些单调性规则来介绍特殊函数和随机阶数领域的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monotonicity rules for the ratio of two function series and two integral transforms

In this paper, we investigate the monotonicity of the functions t k = 0 a k w k ( t ) k = 0 b k w k ( t ) t \mapsto \frac {\sum _{k=0}^\infty a_k w_k(t)}{\sum _{k=0}^\infty b_k w_k(t)} and x α β f ( t ) w ( t , x ) d t α β g ( t ) w ( t , x ) d t x \mapsto \frac {\int _\alpha ^\beta f(t) w(t,x) \mathrm {d} t}{\int _\alpha ^\beta g(t) w(t,x) \mathrm {d} t} , focusing on case where the monotonicity of a k / b k a_k/b_k and f ( t ) / g ( t ) f(t)/g(t) change once. The results presented also provide insights into the monotonicity of the ratios of two power series, two Z \mathcal {Z} -transforms, two discrete Laplace transforms, two discrete Mellin transforms, two Laplace transforms, and two Mellin transforms. Finally, we employ these monotonicity rules to present several applications in the realm of special functions and stochastic orders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信