关于ℝⁿ中超曲面的新加权几何不等式的说明

Pub Date : 2024-04-10 DOI:10.1090/proc/16875
Jie Wu
{"title":"关于ℝⁿ中超曲面的新加权几何不等式的说明","authors":"Jie Wu","doi":"10.1090/proc/16875","DOIUrl":null,"url":null,"abstract":"<p>In this note, we prove a family of sharp weighed inequalities which involve weighted <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\"application/x-tex\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-th mean curvature integral and two distinct quermassintegrals for closed hypersurfaces in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript n\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This inequality generalizes the corresponding result of Wei and Zhou [Bull. Lond. Math. Soc. 55 (2023), pp. 263–281] where their proof is based on earlier results of Kwong-Miao [Pacific J. Math. 267 (2014), pp. 417–422; Commun. Contemp. Math. 17 (2015), p. 1550014]. Here we present a proof which does not rely on Kwong-Miao’s results.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on new weighted geometric inequalities for hypersurfaces in ℝⁿ\",\"authors\":\"Jie Wu\",\"doi\":\"10.1090/proc/16875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note, we prove a family of sharp weighed inequalities which involve weighted <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"k\\\"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-th mean curvature integral and two distinct quermassintegrals for closed hypersurfaces in <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript n\\\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This inequality generalizes the corresponding result of Wei and Zhou [Bull. Lond. Math. Soc. 55 (2023), pp. 263–281] where their proof is based on earlier results of Kwong-Miao [Pacific J. Math. 267 (2014), pp. 417–422; Commun. Contemp. Math. 17 (2015), p. 1550014]. Here we present a proof which does not rely on Kwong-Miao’s results.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本注释中,我们证明了一系列尖锐的权重不等式,它们涉及 R n \mathbb {R}^n 中封闭超曲面的加权 k k -th 平均曲率积分和两个不同的质点积分。这个不等式概括了 Wei 和 Zhou [Bull. Lond. Math. Soc. 55 (2023), pp.267 (2014), pp.Contemp.Math.17 (2015), p. 1550014].这里我们提出一个不依赖邝淼结果的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A note on new weighted geometric inequalities for hypersurfaces in ℝⁿ

In this note, we prove a family of sharp weighed inequalities which involve weighted k k -th mean curvature integral and two distinct quermassintegrals for closed hypersurfaces in R n \mathbb {R}^n . This inequality generalizes the corresponding result of Wei and Zhou [Bull. Lond. Math. Soc. 55 (2023), pp. 263–281] where their proof is based on earlier results of Kwong-Miao [Pacific J. Math. 267 (2014), pp. 417–422; Commun. Contemp. Math. 17 (2015), p. 1550014]. Here we present a proof which does not rely on Kwong-Miao’s results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信