Fernanda Priscila Barbosa Ribeiro, Micaelle Oliveira de Luna Freire, Daniella de Oliveira Coutinho, Marry Aneyts de Santana Cirilo, José Luiz de Brito Alves
{"title":"Gut Dysbiosis and Probiotic Therapy in Chronic Kidney Disease: A Comprehensive Review.","authors":"Fernanda Priscila Barbosa Ribeiro, Micaelle Oliveira de Luna Freire, Daniella de Oliveira Coutinho, Marry Aneyts de Santana Cirilo, José Luiz de Brito Alves","doi":"10.1007/s12602-024-10427-9","DOIUrl":"10.1007/s12602-024-10427-9","url":null,"abstract":"<p><p>Chronic kidney disease (CKD) is a multifactorial disease affecting more than 13.4% of the world's population and is a growing public health problem. It is silent in its early stages and leads to irreversible kidney damage as the disease progresses. A key factor in this progression is the bidirectional relationship between CKD and gut dysbiosis, which creates an imbalance that promotes the accumulation of uremic toxins (UTs), contributing to renal fibrosis, endothelial dysfunction, and decreased glomerular filtration rate. In addition, CKD itself exacerbates gut dysbiosis by altering the composition of the gut microbiota (GM) and promoting the growth of pathogenic microorganisms. Therefore, it is crucial to explore new therapeutic strategies, and the use of probiotics and synbiotics has shown promise in modulating the GM. Numerous preclinical studies have shown that the use of probiotics in CKD has a beneficial effect on the kidney by reducing UTs, apoptosis, inflammation, and oxidative stress. Probiotic treatment has also been associated with restoration of intestinal integrity, modulation of microbial composition and diversity, and increased production of short-chain fatty acids (SCFAs). These positive results have also been observed in patients at different stages of CKD, where the use of probiotics and/or synbiotics was able to improve creatinine levels and uremic parameters and alleviate abdominal discomfort, in addition to modulating GM and reducing serum endotoxin levels. Although recent studies have explored the benefits of probiotics in the treatment of CKD, further research is needed to determine their long-term efficacy and clinical relevance. This review focuses on the factors driving gut dysbiosis in CKD, its role in disease progression, and the potential of probiotics as a therapeutic strategy.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"1797-1819"},"PeriodicalIF":4.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nader Khani, Amir Hesam Shakeri, Sousan Houshmandi, Mohammadreza Ziavand, Roya Abedi-Soleimani, Negin Hosseinzadeh, Aziz Homayouni-Rad
{"title":"The Promising Biological Role of Postbiotics in Treating Human Infertility.","authors":"Nader Khani, Amir Hesam Shakeri, Sousan Houshmandi, Mohammadreza Ziavand, Roya Abedi-Soleimani, Negin Hosseinzadeh, Aziz Homayouni-Rad","doi":"10.1007/s12602-025-10458-w","DOIUrl":"10.1007/s12602-025-10458-w","url":null,"abstract":"<p><p>Infertility poses a global challenge that impacts a significant proportion of the populace. Presently, there is a substantial emphasis on investigating the potential of probiotics and their derivatives, called postbiotics, as an alternative therapeutic strategy for addressing infertility. The term of \"postbiotics\" refers to compounds including peptides, enzymes, teichoic acids, and muropeptides derived from peptidoglycans, polysaccharides, proteins, and organic acids that are excreted by living bacteria or released after bacterial lysis. Postbiotics exhibit the capacity to enhance fertility in both men and women, with their impact on male reproductive function (specifically testicular function, semen quality, and prostate health) and female reproductive health (including modulation of vaginal microbiota and restoration thereof) being posited as potential mechanisms by which postbiotics may enhance fertility. This review highlights definitions of postbiotics, as well as their biological role in treatment of infertility.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2166-2178"},"PeriodicalIF":4.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143066687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lara L Campos, Samantha R M Oliveira, Maisa N S Amaral, Bruno Gallotti, Aline F Oliveira, Rosa M E Arantes, Samantha Ribeiro-Souza, Katia D Vital, Simone O A Fernandes, Valbert N Cardoso, Jacques R Nicoli, Flaviano S Martins
{"title":"Oral Treatment with Saccharomyces cerevisiae CNCM I-3856 Mitigates the Inflammatory Response Experimentally Induced by Salmonella enterica subsp. enterica Serovar Typhimurium in Mice.","authors":"Lara L Campos, Samantha R M Oliveira, Maisa N S Amaral, Bruno Gallotti, Aline F Oliveira, Rosa M E Arantes, Samantha Ribeiro-Souza, Katia D Vital, Simone O A Fernandes, Valbert N Cardoso, Jacques R Nicoli, Flaviano S Martins","doi":"10.1007/s12602-024-10359-4","DOIUrl":"10.1007/s12602-024-10359-4","url":null,"abstract":"<p><p>Salmonella spp. are intracellular, Gram-negative pathogens responsible for a range of diarrheal diseases, which can present either as self-limited (gastroenteritis) or as a systemic form (typhoid fever), characterizing a serious public health problem. In this study, we investigated the therapeutic effects of oral administration of Saccharomyces cerevisiae CNCM I-3856 in a murine model infected with Salmonella Typhimurium (ST). This yeast species has previously demonstrated the potential to support immune function and reduce inflammation and the ability to exert antimicrobial activity, which is important considering the increasing prevalence of antibiotic-resistant bacteria. Our findings revealed that mice infected with ST and only treated with sterile saline exhibited a higher mortality rate and body weight loss. In contrast, mice treated with I-3856 showed a notable reduction in these adverse outcomes. The yeast demonstrated a high capacity for co-aggregation with the pathogen. Furthermore, the significant amounts of yeast found in the feces of treated mice suggest that intestinal colonization was effective, which was associated with several beneficial effects, including reduced intestinal permeability, which likely limits bacterial translocation to extraintestinal organs. Additionally, the administration of I-3856 reduced levels of sIgA and resulted in a decrease in the recruitment of neutrophils and eosinophils to infection sites, indicating a modulation of the inflammatory response. Histological analyses showed attenuated liver and intestinal lesions in the yeast-treated mice, corroborating the protective effects of the yeast. In conclusion, the results suggest that S. cerevisiae CNCM I-3856 has the potential to control the inflammatory response experimentally induced by S. Typhimurium when administered to mice.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2133-2144"},"PeriodicalIF":4.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subramanian Pradeep, Johnson Thangaraj Edward Y S, Suganthi Angappan, Senthilkumar Murugaiyan, Saminathan Vangili Ramasamy, Narayanan Manikanda Boopathi
{"title":"Lactic Acid Bacteria: A Probiotic to Mitigate Pesticide Stress in Honey Bee.","authors":"Subramanian Pradeep, Johnson Thangaraj Edward Y S, Suganthi Angappan, Senthilkumar Murugaiyan, Saminathan Vangili Ramasamy, Narayanan Manikanda Boopathi","doi":"10.1007/s12602-025-10507-4","DOIUrl":"10.1007/s12602-025-10507-4","url":null,"abstract":"<p><p>Using probiotics, especially those containing lactic acid bacteria (LAB), to support honey bee health and alleviate the negative effects of pesticides represents a promising approach for sustainable beekeeping. Probiotics have shown their ability to boost honey bee immune systems, counteract pesticide impacts, and lower disease rates. Bacteria like Lactobacillus and Bifidobacterium have demonstrated their ability to degrade organophosphorus pesticides using phosphatase enzymes. Additionally, these bacteria are resistant to the harmful effects of pesticides and aid in detoxification. Furthermore, supplementing with LAB positively affects colony growth, resulting in increased honey production, improved pollen storage, and higher brood counts. Various methods of delivering probiotics, such as powdered supplements, sucrose syrup, and pollen patties, have been explored, each with its own set of challenges and considerations. Despite making significant progress, further study is still required to fully comprehend the precise interactions between probiotics and the physiology of honey bees, to improve delivery strategies, and to evaluate the wider ecological effects on hive microbiomes. By implementing probiotic strategies in beekeeping practices, we can create stronger and more resilient honey bee colonies that can thrive amidst environmental challenges, thus promoting the sustainability of pollination services.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2212-2226"},"PeriodicalIF":4.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143650012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Liang, Yan Zeng, Hong Hu, Yulong Yin, Xihong Zhou
{"title":"Prevotella copri Improves Selenium Deposition and Meat Quality in the longissimus dorsi Muscle of Fattening Pigs.","authors":"Jing Liang, Yan Zeng, Hong Hu, Yulong Yin, Xihong Zhou","doi":"10.1007/s12602-024-10340-1","DOIUrl":"10.1007/s12602-024-10340-1","url":null,"abstract":"<p><p>Selenium is among the important trace elements that influence the quality of meat. Although it has been established that the gut microbiota is closely associated with selenium metabolism, it has yet to be determined whether these microbes influence the accumulation of selenium in muscles. To identify gut microbiota that potentially influence the deposition of selenium in muscles, we compared the colonic microbial composition of pigs characterized by high and low contents of selenium in the longissimus dorsi muscle and accordingly detected a higher abundance of the bacterium Prevotella copri (P. copri) in pigs with a higher muscle selenium content. To verify the effect of P. copri, 16 pigs weighing approximately 61 kg were fed either a basal diet or a basal diet supplemented with P. copri (1.0 × 10<sup>10</sup> CFU/kg feed) for 45 days. The results revealed significant increases in the contents of selenium and selenoprotein in the serum and longissimus dorsi muscle of fattening pigs fed the P. copri-supplemented diet. Moreover, supplementing the feed of pigs with P. copri was observed to promote significant improvement in the antioxidant capacity and quality of meat, including drip loss, pH, and meat color. In conclusion, our findings in this study indicate that P. copri has potential utility as a dietary supplement for improving the selenium status and meat quality in fattening pigs.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2086-2096"},"PeriodicalIF":4.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141894113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nishant Gupta, M Al-Dossari, N S Abd El-Gawaad, Saad Alghamdi, Naeem F Qusty, Ahmad O Babalghith, Virendra Kumar Yadav, Parwiz Niazi, L O Mallasiy
{"title":"Lactiplantibacillus plantarum Moderating Effect on Autoimmune Celiac Disease Triggers.","authors":"Nishant Gupta, M Al-Dossari, N S Abd El-Gawaad, Saad Alghamdi, Naeem F Qusty, Ahmad O Babalghith, Virendra Kumar Yadav, Parwiz Niazi, L O Mallasiy","doi":"10.1007/s12602-025-10514-5","DOIUrl":"10.1007/s12602-025-10514-5","url":null,"abstract":"<p><p>The only approved preventive treatment option GFD remains insufficient to manage Celiac Disease (CeD). A cohort of probiotic bacteria recently indicated that probiotic bacteria such as L. plantarum (LP) have a protective effect on CeD. LP has been a prominent probiotic, studied for numerous modulating properties. This review highlights and summarizes LP's ameliorating effect on various triggers/drivers of CeD. Probiotic LP potential for CeD is noticeable, mainly involving gut microbiota modulation, gluten digestion, intestinal homeostasis, CeD-associated pathogens reduction, and CD4 + T cell regulation. LP supplementation maintains intestinal physiology by improving the ratio of intestinal villus height to crypt depth. Gut microbiota modulation also improves tight junction proteins and the intestinal barrier. LP increases the digestibility of immunoreactive 33-mer gliadin peptides and regulates immune triggers such as CD4 + T cells. LP supplementation may minimize the gastrointestinal symptoms of CeD. Nevertheless, the therapeutic applicability of LP is subjected to significant clinical and nonclinical studies.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2536-2549"},"PeriodicalIF":4.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143664344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Role of Akkermansia muciniphila in Disease Regulation.","authors":"Yingying Ding, Yingjian Hou, Xingzhen Lao","doi":"10.1007/s12602-025-10642-y","DOIUrl":"10.1007/s12602-025-10642-y","url":null,"abstract":"<p><p>In recent years, Akkermansia muciniphila (A. muciniphila), as a representative of the core gut commensal bacteria, has shown outstanding therapeutic potential in the field of microecological interventions due to its unique mucin degrading ability and host-interaction mechanism. A. muciniphila is first isolated from human feces in 2004. It colonizes the intestinal mucus layer, utilizing mucin secreted by goblet cells as its primary carbon and nitrogen source. In 2013, researchers found that supplementation with A. muciniphila could improve obesity, demonstrating the potential of A. muciniphila in the treatment of disease. Recent studies show that A. muciniphila strengthens intestinal barrier integrity, improves metabolic diseases, and mitigates inflammation through multiple mechanisms, including adenosine monophosphate-activated protein kinase (AMPK) pathway activation via Toll-like receptor (TLR) 2 stimulation and NOD-like receptor family, pyrin domain containing 3 (NLRP3) activation. A. muciniphila and its derivatives also exhibit potent anti-tumor effects. They induce tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) upregulation, triggering extrinsic (death receptor-mediated) and intrinsic (mitochondrial) apoptosis pathways in tumor cells. Additionally, A. muciniphila promotes M1-like tumor-associated macrophages (TAMs) through NLRP3 activation and remodels the tumor microenvironment via metabolic crosstalk with intratumoral microbiota. Notably, A. muciniphila combined with programmed death-1 (PD-1) antibody boost CD8<sup>+</sup> T cell infiltration, thereby overcoming host resistance to PD-1 blockade. Moreover, A. muciniphila contributes to the growth of butyric acid-producing bacteria and suppresses the growth of specific bacterial populations, playing an important role in the gut microbiome network. This review evaluates recent discoveries regarding A. muciniphila's multifaceted roles in maintaining intestinal barrier integrity, ameliorating metabolic and inflammatory disorders, and enhancing anti-tumor immune responses. We also discuss its ecological effect on the gut microbiota flora and point out the therapeutic limitations and prospect which provides theoretical references to promote the development of Akkermansia muciniphila in clinical diseases, especially in tumor therapy.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2027-2038"},"PeriodicalIF":4.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144592029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carolina Iraporda, Irene A Rubel, Ana A Bengoa, Guillermo D Manrique, Graciela L Garrote, Analía G Abraham
{"title":"Lactic Acid Bacteria Strains Isolated from Jerusalem Artichoke (Helianthus tuberosus L.) Tubers as Potential Probiotic Candidates.","authors":"Carolina Iraporda, Irene A Rubel, Ana A Bengoa, Guillermo D Manrique, Graciela L Garrote, Analía G Abraham","doi":"10.1007/s12602-025-10594-3","DOIUrl":"10.1007/s12602-025-10594-3","url":null,"abstract":"<p><p>The search for probiotic candidates is an area that accompanies the world trend of development of novel probiotic strains and new products. In recent years, unconventional sources of potential probiotic bacteria have been studied. Furthermore, there has been an increasing interest in non-dairy and plant-based probiotic foods, currently being considered as a priority for the food industry. The aim of this study was to evaluate the probiotic potential of lactic acid bacteria (LAB) isolated from Jerusalem artichoke tubers. These strains were characterized by in vitro tests for their biochemical and probiotic properties and safety aspects. The results demonstrated that the LAB strains isolated exhibited a survival rate after acid exposure exceeding 90%, maintained viability above 88% under simulated gastrointestinal conditions, and the autoaggregation capacity ranged from 61 to 81%. Additionally, the strains showed no hemolytic activity and were sensitive to antibiotics. The isolates also downregulated the proinflammatory responses and showed antimicrobial activity against E. coli and B. cereus. The bacilli strains showed a high similarity with Lentilactobacillus kosonis and Lentilactobacillus curieae. Hence, these strains revealed potential probiotic in vitro characteristics that position them to be used in plant-based functional food. This strategic exploration of probiotic bacteria sourced from vegetables not only enhances the diversity of available strains-both taxonomically and functionally-but also fosters the development of sustainable, plant-based probiotic applications.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2522-2535"},"PeriodicalIF":4.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144136335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angela Rocio Ortiz Camargo, Oscar van Mastrigt, Joost W Gouw, Yue Liu, Roger S Bongers, Jeroen van Bergenhenegouwen, Jan Knol, Tjakko Abee, Eddy J Smid
{"title":"Characterization of Extracellular Vesicles from Streptococcus thermophilus 065 and Their Potential to Modulate the Immune Response.","authors":"Angela Rocio Ortiz Camargo, Oscar van Mastrigt, Joost W Gouw, Yue Liu, Roger S Bongers, Jeroen van Bergenhenegouwen, Jan Knol, Tjakko Abee, Eddy J Smid","doi":"10.1007/s12602-024-10422-0","DOIUrl":"10.1007/s12602-024-10422-0","url":null,"abstract":"<p><p>Bacteria can release membrane-derived nanoparticles made of lipid bilayers, so-called extracellular vesicles (EVs), which can carry diverse cargo and are important for microbe-microbe and microbe-host interactions. Here, we studied the production of EVs by Streptococcus thermophilus 065, the protein composition of the EVs, and how the produced EVs impact the immune response in vitro. Cultures of S. thermophilus grown for 6 h at 40 °C in M17 broth with 2% lactose reached high biomass yields and a high level of EVs quantified by lipophilic fluorescent dye staining. Proteome analysis of the isolated EVs revealed a high abundance of membrane-associated binding proteins of ABC transporters, ribosomal proteins, and glycolytic enzymes. In addition, phage proteins were found to be present in the EVs, which suggests a low-level expression of prophage genes during growth most likely supporting the release of EVs without causing cell lysis. The role of prophage activation was confirmed in an experiment with the addition of mitomycin C resulting in the expression of phage proteins including holin and endolysin causing a drop in culture OD and concomitant EV release. Subsequent in vitro immune assays using non-activated and activated human peripheral blood mononuclear cells (PBMCs) showed immune regulation in both cases upon exposure to S. thermophilus EVs and producer cells. This study shows the capacity of S. thermophilus EVs to act as immune modulators and opens the possibility for their use as postbiotics.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2301-2312"},"PeriodicalIF":4.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405351/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143074854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Production, Delivery, and Regulatory Aspects for Application of Plant-Based Anti-microbial Peptides: a Comprehensive Review.","authors":"Praveen Nagella, Balamuralikrishnan Balasubramanian, Sungkwon Park, Udisha Singh, Arpita Jayan, Saptadeepa Mukherjee, Aatika Nizam, Arun Meyyazhagan, Manikantan Pappuswamy, Joseph Kadanthottu Sebastian, Vasantha Veerappa Lakshmaiah, Amin Mousavi Khaneghah","doi":"10.1007/s12602-024-10421-1","DOIUrl":"10.1007/s12602-024-10421-1","url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases. This plant-based antimicrobial peptide is a promising candidate for fighting against drug-resistant microbes. The PAMPs process specific key properties, proving their efficacy as antimicrobial agents against a broad spectrum of microbes such as Gram-positive, Gram-negative, and fungi. Extensive research on PAMPs has explored their potential as plant growth regulators and therapeutic agents. Their diverse mode of action on microbes encouraged their application in food industries. The PAMPs are isolated and purified from various plant species' organs such as roots, shoots, leaves, flowers, and seeds. These are bioactive molecules with significant stability, and low toxicity has encouraged their application as food additives. Furthermore, to meet the consumer demand, mass production of AMPs was possible with recombinant DNA technology. The advanced and nanotechnology-based delivery system has significantly improved the efficacy and bioavailability of PAMPs as food preservatives for improved shelf-life and prevent spoilage of food products. The PAMPs are of green origin and can be used as natural bio preservatives that do not alter the sensory properties of food and are harmless to consumers. Plants being the rich resource of AMPs to support their quick identification, and retrieval for commercial applications there is a need to integrate the omics approach with databases. The AMPs are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases. This plant-based antimicrobial peptide is a promising candidate for fighting against drug-resistant microbes. The PAMPs process specific key properties, proving their efficacy as antimicrobial agents against a broad spectrum of microbes such as Gram-positive, Gram-negative, and fungi. Extensive research on PAMPs has explored their potential as plant growth regulators and therapeutic agents. Their diverse mode of action on microbes encouraged their application in food industries. The PAMPs are isolated and purified from various plant species' organs such as roots, shoots, leaves, flowers, and seeds. These are bioactive molecules with significant stability, and low toxicity has encouraged their application as food additives. Furthermore, to meet the consumer demand, mass production of AMPs was possible with recombinant DNA technology. The advanced and nanotechnology-based delivery system has significantly improved the efficacy ","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"2362-2393"},"PeriodicalIF":4.4,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142927696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}