{"title":"生物大分子包封益生菌用于神经治疗和功能食品研究进展","authors":"Xitong Wang, Jinhua Hu, Hanzhong Zhang, Peng Zhou","doi":"10.1007/s12602-025-10453-1","DOIUrl":null,"url":null,"abstract":"<p><p>Probiotics are live microorganisms that confer health benefits to humans, offering significant potential for preventing and treating various diseases. Neurological disorders, driven by multifaceted factors and linked to high disability rates, have become a growing global concern, particularly in the context of an aging population. Recent studies emphasize a strong connection between dysbiosis of the gut microbiota and neurological disorders. Probiotics have emerged as promising therapeutic interventions due to their ability to modulate the gut microbiota and influence the production of key metabolites, such as short-chain fatty acids and neurotransmitters, crucial for neurological health. However, probiotic viability is often compromised, limiting their therapeutic efficacy. We propose that developing high-activity probiotic formulations, coupled with innovative delivery strategies, holds considerable promise for advancing neurological treatments. Encapsulation systems have proven effective in enhancing probiotic stability and efficacy. This review discusses advances in probiotic delivery using biological macromolecule-based encapsulation, addressing key challenges in maintaining viability during production, storage, and digestion. It also highlights emerging delivery systems, such as microencapsulation, aimed at improving stability and therapeutic effectiveness. Additionally, the review explores the potential of functional foods enriched with probiotics for neurological health. Future research should explore clinical applications of encapsulated probiotics and support the development of functional foods to enhance neurological health.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probiotics Encapsulated via Biological Macromolecule for Neurological Therapy and Functional Food: A Review.\",\"authors\":\"Xitong Wang, Jinhua Hu, Hanzhong Zhang, Peng Zhou\",\"doi\":\"10.1007/s12602-025-10453-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Probiotics are live microorganisms that confer health benefits to humans, offering significant potential for preventing and treating various diseases. Neurological disorders, driven by multifaceted factors and linked to high disability rates, have become a growing global concern, particularly in the context of an aging population. Recent studies emphasize a strong connection between dysbiosis of the gut microbiota and neurological disorders. Probiotics have emerged as promising therapeutic interventions due to their ability to modulate the gut microbiota and influence the production of key metabolites, such as short-chain fatty acids and neurotransmitters, crucial for neurological health. However, probiotic viability is often compromised, limiting their therapeutic efficacy. We propose that developing high-activity probiotic formulations, coupled with innovative delivery strategies, holds considerable promise for advancing neurological treatments. Encapsulation systems have proven effective in enhancing probiotic stability and efficacy. This review discusses advances in probiotic delivery using biological macromolecule-based encapsulation, addressing key challenges in maintaining viability during production, storage, and digestion. It also highlights emerging delivery systems, such as microencapsulation, aimed at improving stability and therapeutic effectiveness. Additionally, the review explores the potential of functional foods enriched with probiotics for neurological health. Future research should explore clinical applications of encapsulated probiotics and support the development of functional foods to enhance neurological health.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-025-10453-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-025-10453-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Probiotics Encapsulated via Biological Macromolecule for Neurological Therapy and Functional Food: A Review.
Probiotics are live microorganisms that confer health benefits to humans, offering significant potential for preventing and treating various diseases. Neurological disorders, driven by multifaceted factors and linked to high disability rates, have become a growing global concern, particularly in the context of an aging population. Recent studies emphasize a strong connection between dysbiosis of the gut microbiota and neurological disorders. Probiotics have emerged as promising therapeutic interventions due to their ability to modulate the gut microbiota and influence the production of key metabolites, such as short-chain fatty acids and neurotransmitters, crucial for neurological health. However, probiotic viability is often compromised, limiting their therapeutic efficacy. We propose that developing high-activity probiotic formulations, coupled with innovative delivery strategies, holds considerable promise for advancing neurological treatments. Encapsulation systems have proven effective in enhancing probiotic stability and efficacy. This review discusses advances in probiotic delivery using biological macromolecule-based encapsulation, addressing key challenges in maintaining viability during production, storage, and digestion. It also highlights emerging delivery systems, such as microencapsulation, aimed at improving stability and therapeutic effectiveness. Additionally, the review explores the potential of functional foods enriched with probiotics for neurological health. Future research should explore clinical applications of encapsulated probiotics and support the development of functional foods to enhance neurological health.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.