Multi-Enzyme Supplementation to Diets Containing 2 Protein Levels Affects Intramuscular Fat Content in Muscle and Modulates Cecal Microflora Without Affecting the Growth Performance of Finishing Pigs.
IF 4.4 2区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Qianqian Zhang, Sungbo Cho, Junho Song, Jinuk Jeong, Minjae Yu, Seyoung Mun, Kyudong Han, In Ho Kim
{"title":"Multi-Enzyme Supplementation to Diets Containing 2 Protein Levels Affects Intramuscular Fat Content in Muscle and Modulates Cecal Microflora Without Affecting the Growth Performance of Finishing Pigs.","authors":"Qianqian Zhang, Sungbo Cho, Junho Song, Jinuk Jeong, Minjae Yu, Seyoung Mun, Kyudong Han, In Ho Kim","doi":"10.1007/s12602-023-10169-0","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the effects of crude protein (CP) levels and exogenous enzymes on growth performance, meat quality, toxic gas emissions, and colonic microbiota community in 200 finishing pigs. Four groups corresponded to 4 diets: 16.74% CP (high-protein level, HP) and 14.73% CP (medium protein level, MP) diet supplemented with or without 1-g/kg multi-enzymes (ENZs, including 1000-U/kg protease, 2500-U/kg α-amylase, and 10,000-U/kg β-glucanase), using a 2 × 2 factorial arrangement. After 7 weeks of trial, ENZs supplementation increased (P < 0.05) the average daily gain (ADG) of finishing pigs during weeks 4 to 7 and in the overall period and improved gross energy utilization. Dietary HP improved (P < 0.05) ADG during the overall period. The MP diet-treated pigs had higher intramuscular fat (IMF) content in the longissimus dorsi muscle (P < 0.01). ENZs supplementation to the MP diets lowered muscle IMF content (P < 0.01). Additionally, pigs fed the HP diet released (P < 0.05) more NH<sub>3</sub> and H<sub>2</sub>S in excrement. The HP diet enhanced (P < 0.05) intestinal microbial richness, represented by higher observed_ amplicon sequence variants and Chao1. Administration of ENZs to the HP diet increased (P < 0.05) the Shannon and Pielou's evenness. Dietary MP promoted Firmicutes proliferation. Supplementary HP diet increased the relative abundances of Spirochaetota, Verrucomicrobiota, Desulfobacterota, and Fibrobacterota (P < 0.05). Supplemental ENZ elevated (P < 0.05) Actinobacteriota and Desulfobacterota abundances. ENZ supplementation to the HP diet increased the abundances of Bacteroidota, Desulfobacterota, and Proteobacteria but lowered their abundances in the MP diet. Taken together, the HP diet or ENZs' supplements improved growth performance. Although the interaction between CP levels and ENZs had no effect on growth performance, it modulated colonic flora and muscle IMF content.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":"976-990"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-023-10169-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the effects of crude protein (CP) levels and exogenous enzymes on growth performance, meat quality, toxic gas emissions, and colonic microbiota community in 200 finishing pigs. Four groups corresponded to 4 diets: 16.74% CP (high-protein level, HP) and 14.73% CP (medium protein level, MP) diet supplemented with or without 1-g/kg multi-enzymes (ENZs, including 1000-U/kg protease, 2500-U/kg α-amylase, and 10,000-U/kg β-glucanase), using a 2 × 2 factorial arrangement. After 7 weeks of trial, ENZs supplementation increased (P < 0.05) the average daily gain (ADG) of finishing pigs during weeks 4 to 7 and in the overall period and improved gross energy utilization. Dietary HP improved (P < 0.05) ADG during the overall period. The MP diet-treated pigs had higher intramuscular fat (IMF) content in the longissimus dorsi muscle (P < 0.01). ENZs supplementation to the MP diets lowered muscle IMF content (P < 0.01). Additionally, pigs fed the HP diet released (P < 0.05) more NH3 and H2S in excrement. The HP diet enhanced (P < 0.05) intestinal microbial richness, represented by higher observed_ amplicon sequence variants and Chao1. Administration of ENZs to the HP diet increased (P < 0.05) the Shannon and Pielou's evenness. Dietary MP promoted Firmicutes proliferation. Supplementary HP diet increased the relative abundances of Spirochaetota, Verrucomicrobiota, Desulfobacterota, and Fibrobacterota (P < 0.05). Supplemental ENZ elevated (P < 0.05) Actinobacteriota and Desulfobacterota abundances. ENZ supplementation to the HP diet increased the abundances of Bacteroidota, Desulfobacterota, and Proteobacteria but lowered their abundances in the MP diet. Taken together, the HP diet or ENZs' supplements improved growth performance. Although the interaction between CP levels and ENZs had no effect on growth performance, it modulated colonic flora and muscle IMF content.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.