Probiotics and Antimicrobial Proteins最新文献

筛选
英文 中文
Antimicrobial Peptides: Mechanism, Expressions, and Optimization Strategies. 抗菌肽:机理、表达和优化策略。
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-11-11 DOI: 10.1007/s12602-024-10391-4
Huabiao Miao, Lu Wang, Qian Wu, Zunxi Huang
{"title":"Antimicrobial Peptides: Mechanism, Expressions, and Optimization Strategies.","authors":"Huabiao Miao, Lu Wang, Qian Wu, Zunxi Huang","doi":"10.1007/s12602-024-10391-4","DOIUrl":"https://doi.org/10.1007/s12602-024-10391-4","url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are favoured because of their broad-spectrum antimicrobial properties and because they do not easily develop microbial resistance. However, the low yield and difficult extraction processes of AMPs have become bottlenecks in large-scale industrial applications and scientific research. Microbial recombinant production may be the most economical and effective method of obtaining AMPs in large quantities. In this paper, we review the mechanism, summarize the current status of microbial recombinant production, and focus on strategies to improve the yield and activity of AMPs, in order to provide a reference for their large-scale production.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142626478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advancements in Harnessing Lactic Acid Bacterial Metabolites for Fruits and Vegetables Preservation. 利用乳酸菌代谢物保鲜水果和蔬菜的最新进展。
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-11-08 DOI: 10.1007/s12602-024-10392-3
Vaishnavi Pratha Gajendran, Subhashini Rajamani
{"title":"Recent Advancements in Harnessing Lactic Acid Bacterial Metabolites for Fruits and Vegetables Preservation.","authors":"Vaishnavi Pratha Gajendran, Subhashini Rajamani","doi":"10.1007/s12602-024-10392-3","DOIUrl":"https://doi.org/10.1007/s12602-024-10392-3","url":null,"abstract":"<p><p>Postharvest losses in fruits and vegetables exert substantial economic and environmental repercussions. Chemical interventions are being widely utilized for the past six decades which may lead to significant health complications. Bioprotection of fruits and vegetables is the need of the hour in which use of lactic acid bacteria (LAB) with GRAS status predominantly stands out. Incorporation of LAB in postharvest fruits and vegetables suppresses the growth of spoilage organisms by synthesizing various antimicrobial compounds such as bacteriocins, organic acids, hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), exopolysaccharides (EPS), and BLIS. For example, Pediococcus acidilactici, Lactobacillus plantarum, and Limosilactobacillus fermentum convert natural sugars in fruits and vegetables to lactic acid and create an acidic environment that do not favour spoilage organisms. LAB can improve the bioavailability of vitamins and minerals and enrich the phenolic profile and bioactivity components. LAB has remarkable physiological characteristics like resistance towards bacteriophage, proteolytic activity, and polysaccharide production which adds to the safety of foods. They modify the sensory properties and preserve the nutritional quality of fruits and vegetables. They can also perform therapeutic role in the intestinal tract as they tolerate low pH, high salt concentration. Thus application of LAB, whether independently or in conjunction with stabilizing agents as edible coatings, is regarded as an exceptionally promising methodology for ensuring safer consumption of fruits and vegetables. This review addresses the most recent research findings that harness the antagonistic property of lactic acid bacterial metabolites, formulations and coatings containing their bioactive compounds for extended shelf life of fruits and vegetables.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Synbiotic Protects Against DSS-Induced Colitis in Mice via Anti-inflammatory and Microbiota-Balancing Properties. 一种新型合成益生菌通过抗炎和平衡微生物群的特性保护小鼠免受 DSS 诱发的结肠炎影响
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-11-07 DOI: 10.1007/s12602-024-10393-2
Yong Yang, Yuyu Qiao, Ge Liu, Weihao Chen, Ting Zhang, Jing Liu, Weiping Fan, Mingwei Tong
{"title":"A Novel Synbiotic Protects Against DSS-Induced Colitis in Mice via Anti-inflammatory and Microbiota-Balancing Properties.","authors":"Yong Yang, Yuyu Qiao, Ge Liu, Weihao Chen, Ting Zhang, Jing Liu, Weiping Fan, Mingwei Tong","doi":"10.1007/s12602-024-10393-2","DOIUrl":"https://doi.org/10.1007/s12602-024-10393-2","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is a chronic immune-inflammatory disease. Gut microbes, intestinal immunity, and gut barrier function play a critical role in IBD. Growing evidence suggests that synbiotic may offer therapeutic benefits for individuals with colitis, suggesting an alternative therapy against colitis. With this in mind, we creatively prepared a new synbiotic combination consisting of a probiotic strain (Limosilactobacillus reuteri) along with one prebiotic chitooligosaccharides (COS). The protective effects of the synbiotic on DSS-induced colitis and the underlying mechanisms were investigated. We demonstrated that the synbiotic ameliorated colitis in mice, as evidenced by a significant remission in body weight loss and colon shortening, and a decreased disease activity index (DAI). Notably, synbiotic reduced the intestinal inflammation and injury by synergistically decreasing inflammatory factors, inhibiting TLR4/Myd88/NF-κB/NLRP3 signaling, preventing macrophage infiltration, and enhancing the integrity of the intestinal barrier. Moreover, synbiotic selectively promoted the growth of beneficial bacteria (e.g., Akkermansia, Lactobacillus) but decreased the pathogenic bacteria (e.g., Helicobacter). BugBase's analysis supported its ameliorated role in reducing pathogenic bacteria. Collectively, our findings revealed the novel synbiotic had a potential to treat colitis, which was associated with its anti-inflammatory and microbiota-balancing properties. This study will contribute to the development of functional synbiotic products for IBD therapy and will provide valuable insights into their mechanisms.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Synergistic and Chimeric Mechanism of Bacteriophage Endolysins: Opportunities for Application in Biotherapeutics, Food, and Health Sectors. 噬菌体内溶酶的协同和嵌合机制:生物治疗、食品和健康领域的应用机遇。
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-11-07 DOI: 10.1007/s12602-024-10394-1
Manisha Behera, Sachinandan De, Soma M Ghorai
{"title":"The Synergistic and Chimeric Mechanism of Bacteriophage Endolysins: Opportunities for Application in Biotherapeutics, Food, and Health Sectors.","authors":"Manisha Behera, Sachinandan De, Soma M Ghorai","doi":"10.1007/s12602-024-10394-1","DOIUrl":"https://doi.org/10.1007/s12602-024-10394-1","url":null,"abstract":"<p><p>A major growing concern in the human and animal health sector is the emergence of antibiotic-resistant pathogenic bacteria due to the indiscriminate use of antibiotics. The exogenous application of bacteriophage endolysins causes abrupt lysis of the bacterial cell wall, which computes them as alternatives to antibiotics. Although naturally occurring endolysins may display limitations in solubility, lytic activity, and narrow lytic spectrum, novel strategies like developing chimeric endolysins and using endolysins in synergism with other antimicrobial agents are required to improve the lytic activity of natural endolysins. The modular structure of endolysins led to the development of novel chimeric endolysins via shuffling enzymatic and cell wall binding domains of different endolysins, using endolysins in a synergistic approach, and their applications in various in vitro and in vivo experiments and different applicable areas. This article aims to review the role of chimeric endolysins and their use in synergistic mode with other biofilm-reducing agents to control biofilm formation and deteriorating pre-formed biofilms in food, dairy, and medical industries. Promoting further development of phage technology and innovation in antibiotic therapy can achieve long-term sustainable development and economic returns.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synbiotic Effects of Lacticaseibacillus paracasei K56 and Prebiotics on the Intestinal Microecology of Children with Obesity. 副酸乳杆菌 K56 和益生元对肥胖儿童肠道微生态的协同作用
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-11-06 DOI: 10.1007/s12602-024-10395-0
Pengwei Zhang, Xianhui Dong, Yijun Zeng, Junkui Chen, Sijia Yang, Peipei Yu, Chunhong Ye, Wei-Lian Hung, Qiuyue Jiang, Wen Zhao, Zhaozhong Zeng, Jinjun Li, Li Li
{"title":"Synbiotic Effects of Lacticaseibacillus paracasei K56 and Prebiotics on the Intestinal Microecology of Children with Obesity.","authors":"Pengwei Zhang, Xianhui Dong, Yijun Zeng, Junkui Chen, Sijia Yang, Peipei Yu, Chunhong Ye, Wei-Lian Hung, Qiuyue Jiang, Wen Zhao, Zhaozhong Zeng, Jinjun Li, Li Li","doi":"10.1007/s12602-024-10395-0","DOIUrl":"https://doi.org/10.1007/s12602-024-10395-0","url":null,"abstract":"<p><p>Lacticaseibacillus paracasei K56 (L. paracasei K56) is a probiotic with weight-loss effects. However, symbiosis research on the combined effects of Lacticaseibacillus paracasei K56 and prebiotics is lacking. Therefore, the aim of this study was to investigate the effects of L. paracasei K56, xylooligosaccharide (XOS), galactooligosaccharide (GOS), polyglucose (PG), and their synbiotic combinations (XOS + K56, GOS + K56, and PG + K56) on metabolism and gut composition in children with obesity, using an in vitro fermentation model. Fecal samples were collected from 14 children with obesity for in vitro fermentation, and the effects of the various treatments in gas production and short chain fatty acid synthesis (SCFAs) were assessed. Treatment with probiotics, prebiotics, and synbiotics regulated gut microbiota and metabolites in children with obesity. GOS and XOS had higher degradation rates than PG + K56 synbiotics in the gut microbiota of children with obesity. Moreover, treatment with XOS, GOS, and their synbiotic combinations, (XOS + K56) and (GOS + K56), significantly reduced the production of gas, propionic acid, and butyric acid compared with PG + K56 treatment. Treatments with GOS + K56 and XOS + K56 altered the composition of the gut microbiota, improved the abundance of Bifidobacteria and Lactobacilli, and reduced the abundance of Escherichia/Shigella. Overall, this study provides a theoretical foundation for the use of K56-based synbiotics.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Lactobacillus spp. on Helicobacter pylori: A Promising Frontier in the Era of Antibiotic Resistance. 乳酸杆菌对幽门螺旋杆菌的影响:抗生素耐药性时代前景光明的前沿。
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-11-05 DOI: 10.1007/s12602-024-10396-z
Debabrata Dash, Vivek Mishra, Manoj Kumar Panda, Sushil Kumar Pathak
{"title":"Effects of Lactobacillus spp. on Helicobacter pylori: A Promising Frontier in the Era of Antibiotic Resistance.","authors":"Debabrata Dash, Vivek Mishra, Manoj Kumar Panda, Sushil Kumar Pathak","doi":"10.1007/s12602-024-10396-z","DOIUrl":"https://doi.org/10.1007/s12602-024-10396-z","url":null,"abstract":"<p><p>Helicobacter pylori, a pathogenic bacterium responsible for multiple gastrointestinal disorders, has emerged as a major global concern due to rise in antibiotic resistance. Unwanted side effects of antibiotics therapy are further complicating the treatment strategies. Consequently, an alternative approach, using probiotics has emerged as a promising solution for treating H. pylori infections. Probiotics have shown considerable potential in increasing the cure rate and reducing the side effects through diverse mechanisms. Among the widely employed probiotics, Lactobacillus spp. has garnered particular attention in this review. After reviewing the studies on effects of Lactobacillus spp. on H. pylori, it is evident that several Lactobacillus spp. have demonstrated their potential efficacy against H. pylori infection, when administered alone or in conjunction with antibiotics, in a strain-specific manner. Furthermore, the inclusion of Lactobacillus spp. in the treatment regimen has also been associated with a reduction in the side effects related to antibiotic-based therapies. Future research may focus on identifying optimal strains and treatment regimens, understanding the long-term impacts of use, and determining their role in preventing H. pylori infection in various populations.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142584178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation, Potential Beneficial Properties, and Assessment of Storage Stability of Direct-Fed Microbial Consortia from Wild-Type Chicken Intestine. 从野生型鸡肠道中直接饲喂微生物群的分离、潜在有益特性和储存稳定性评估
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-10-25 DOI: 10.1007/s12602-024-10387-0
Haiku D J Gómez-Velázquez, Pamela Peña-Medellín, Carlos O Guzmán-Hernández, Laura González-Dávalos, Alfredo Varela-Echavarría, Armando Shimada, Ofelia Mora
{"title":"Isolation, Potential Beneficial Properties, and Assessment of Storage Stability of Direct-Fed Microbial Consortia from Wild-Type Chicken Intestine.","authors":"Haiku D J Gómez-Velázquez, Pamela Peña-Medellín, Carlos O Guzmán-Hernández, Laura González-Dávalos, Alfredo Varela-Echavarría, Armando Shimada, Ofelia Mora","doi":"10.1007/s12602-024-10387-0","DOIUrl":"https://doi.org/10.1007/s12602-024-10387-0","url":null,"abstract":"<p><p>Direct-fed microorganisms (DFM) are recognized as an alternative to antibiotic-based growth promoters in poultry production due to their health benefits. DFM, however, should undergo rigorous safety testing to ensure they meet the criteria to be \"Generally Recognized as Safe.\" This study assessed eight bacterial consortia (BC) isolated from the ileal and cecal intestinal regions of wild-type chickens, subjecting them to probiotic tests. Subsequently, they were spray- and freeze-dried to evaluate their storage stability for 30 days. BC5-I and BC7-I, isolated from the ileum, emerged as promising DFM, displaying a high content of Lactobacillales using a selective medium and higher susceptibility to Gram-positive and Gram-negative antibiotics. These BC showed a high tolerance to temperature (> 90%), pH > 4 (88-98%), and antagonist effects against Escherichia coli and Salmonella. BC5-I exhibited superior survival in the simulated gastric conditions and satisfactory intestine mucus adhesion. Freeze-drying was the best method to obtain BC5-I and BC7-I powders, with a survival efficiency of 80.3% and 73.2%, respectively, compared to the beginning of storage. BC5-I presented the lowest cell death rate and prolonged half-life through survival storage kinetics. BC5-I only contained Lactobacillus, and Limosilactobacillus reuteri was the predominant species in liquid (78.3%) and freeze-dried (59.8%) forms. BC5-I stands out as a promising Lactobacillus-based DFM that could improve chicken intestinal health and enhance meat and egg production.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Probiotics on Sperm Quality in the Adult Mouse. 益生菌对成年小鼠精子质量的影响
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-10-23 DOI: 10.1007/s12602-024-10388-z
Ana Sanchez-Rodriguez, Ingrid I D Idrovo, Rocío Villafranca, Nerea Latorre, Juan Antonio Rielo, Ane Laburu, Sandra Nieto-Román, Daniel Heredia, Rubén González, Virginia García-Cañas, Diego Laxalde, Carolina Simó, David R Vieites, Eduardo R S Roldan
{"title":"Effect of Probiotics on Sperm Quality in the Adult Mouse.","authors":"Ana Sanchez-Rodriguez, Ingrid I D Idrovo, Rocío Villafranca, Nerea Latorre, Juan Antonio Rielo, Ane Laburu, Sandra Nieto-Román, Daniel Heredia, Rubén González, Virginia García-Cañas, Diego Laxalde, Carolina Simó, David R Vieites, Eduardo R S Roldan","doi":"10.1007/s12602-024-10388-z","DOIUrl":"https://doi.org/10.1007/s12602-024-10388-z","url":null,"abstract":"<p><p>The administration of probiotics for the treatment of different diseases has gained interest in recent years. However, few studies have evaluated their effects on reproductive traits. The objective of this study was to examine the effect of two mixtures of probiotics, a commercial probiotic (Vivomixx®) and a mix of Lacticaseibacillus rhamnosus GG and Faecalibacterium duncaniae A2-165, on sperm quality in a mouse model. Adult male mice (8 months old) were used for two experimental and one control groups (n = 5 each). The probiotics or physiological serum (control) was administered orally, twice a week, during 5 weeks. Sperm were collected from the cauda epididymis, and their total number, motility, kinematics, morphology, and acrosome integrity were assessed in recently collected samples and after a 60-min in vitro incubation. Results showed a higher percentage of normal sperm in both experimental groups, with fewer head abnormalities than in the control. Differences were found among groups in the morphometry of sperm heads, being more elongated in mice treated with probiotics. Sperm from probiotic-treated mice showed similar total motility when compared to the controls, although the proportion of progressively moving sperm and their vigor of motility were lower. Sperm swimming descriptors were measured with a CASA system. Velocity parameters were similar among groups whereas linearity was higher in mice treated with the commercial probiotic. These results suggest that the administration of probiotics may increase the proportion of sperm with normal morphology and lead to modifications in sperm head shape that may enhance sperm swimming. Studies using a longer administration period would be useful in further characterizing the effect of these probiotic mixtures on sperm quality and fertilization capacity.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alteration of Cecal Microbiota by Antimicrobial Peptides Enhances the Rational and Efficient Utilization of Nutrients in Holstein Bulls. 抗菌肽对盲肠微生物群的改变可提高荷斯坦公牛对营养物质的合理有效利用。
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-10-23 DOI: 10.1007/s12602-024-10379-0
Jinping Shi, Yu Lei, Zemin Li, Li Jia, Pengjia He, Qiang Cheng, Zhao Zhang, Zhaomin Lei
{"title":"Alteration of Cecal Microbiota by Antimicrobial Peptides Enhances the Rational and Efficient Utilization of Nutrients in Holstein Bulls.","authors":"Jinping Shi, Yu Lei, Zemin Li, Li Jia, Pengjia He, Qiang Cheng, Zhao Zhang, Zhaomin Lei","doi":"10.1007/s12602-024-10379-0","DOIUrl":"https://doi.org/10.1007/s12602-024-10379-0","url":null,"abstract":"<p><p>We previously observed that supplementation with antimicrobial peptides facilitated the average daily weight gain, net meat, and carcass weights of Holstein bulls. To expand our knowledge of the possible impact of antimicrobial peptides on cecum microbiota, further investigations were conducted. In this study, 18 castrated Holstein bulls with insignificant weight differences and 10 months of age were split randomly into two groups. The control group (CK) was fed a basic diet, whereas the antimicrobial peptide group (AP) was supplemented with 8 g of antimicrobial peptides for 270 days. After slaughter, metagenomic and metabolomic sequencing analyses were performed on the cecum contents. The results showed significantly higher levels of amylase, cellulase, protease, and lipase in the CK than in the AP group (P ≤ 0.05). The levels of β-glucosidase and xylanase (P ≤ 0.05), and acetic and propionic acids (P ≤ 0.01), were considerably elevated in the AP than in the CK group. The metagenome showed variations between the two groups only at the bacterial level, and 3258 bacteria with differences were annotated. A total of 138 differential abundant genes (P < 0.05) were identified in the CAZyme map, with 65 genes more abundant in the cecum of the AP group and 48 genes more abundant in the cecum of the CK group. Metabolomic analysis identified 68 differentially expressed metabolites. Conjoint analysis of microorganisms and metabolites revealed that Lactobacillus had the greatest impact on metabolites in the AP group and Brumimicrobium in the CK group. The advantageous strains of the AP group Firmicutes bacterium CAG:110 exhibited a strong symbiotic relationship with urodeoxycholic acid and hyodeoxycholic acid. This study identified the classification characteristics, functions, metabolites, and interactions of cecal microbiota with metabolites that contribute to host growth performance. Antimicrobial peptides affect the cecal microorganisms, making the use of nutrients more efficient. The utilization of hemicellulose in the cecum of ruminants may contribute more than cellulose to their production performance.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomic Characterization and Probiotic Properties of Lactiplantibacillus pentosus Isolated from Fermented Rice. 从发酵大米中分离出的五联乳杆菌的基因组特征和益生特性
IF 4.4 2区 生物学
Probiotics and Antimicrobial Proteins Pub Date : 2024-10-21 DOI: 10.1007/s12602-024-10378-1
Athira Cheruvari, Rajagopal Kammara
{"title":"Genomic Characterization and Probiotic Properties of Lactiplantibacillus pentosus Isolated from Fermented Rice.","authors":"Athira Cheruvari, Rajagopal Kammara","doi":"10.1007/s12602-024-10378-1","DOIUrl":"https://doi.org/10.1007/s12602-024-10378-1","url":null,"abstract":"<p><p>The aim of the study was the preliminary genetic and phenotypic characterization of a potential probiotic strain of Lactiplantibacillus pentosus (strain krglsrbmofpi2) obtained from traditionally fermented rice. Genome sequencing revealed that the strain has a 3.7-Mb genome with a GC content of 46 and a total of 3192 protein-coding sequences. Using bioinformatic methods, we have successfully identified phage genes, plasmids, pathogenicity, antibiotic resistance and a variety of bacteriocins. Through comprehensive biochemical and biophysical analyses, we have gained valuable insights into its auto-aggregation, co-aggregation, antibiotic resistance, hydrophobicity, antioxidant activity and tolerance to simulated gastrointestinal conditions. The safety evaluation of the isolated L. pentosus was performed on the basis of its haemolytic activity. Our studies have shown that this strain has a strong antagonistic activity against the priority pathogens identified by the World Health Organization such as Vibrio cholerae, Clostridium perfringens, Salmonella enterica subsp. enterica ser. Typhi, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. It is essential to fully understand the genetic and functional properties of the L. pentosus strain before considering its use as a useful probiotic in the food industry.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142473166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信