Precision Agriculture最新文献

筛选
英文 中文
Soil sampling and sensed ancillary data requirements for soil mapping in precision agriculture I. delineation of management zones to determine zone averages of soil properties I. 划定管理区以确定土壤特性的区平均值
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2024-02-28 DOI: 10.1007/s11119-023-10107-8
Ruth Kerry, Ben Ingram, Margaret Oliver, Zoë Frogbrook
{"title":"Soil sampling and sensed ancillary data requirements for soil mapping in precision agriculture I. delineation of management zones to determine zone averages of soil properties","authors":"Ruth Kerry, Ben Ingram, Margaret Oliver, Zoë Frogbrook","doi":"10.1007/s11119-023-10107-8","DOIUrl":"https://doi.org/10.1007/s11119-023-10107-8","url":null,"abstract":"<p>Sensed and soil sample data are used in two main approaches for mapping soil properties in precision agriculture: management zones (MZs) and contour maps. This is the first of two papers that explores maps of MZs. Management zones based on variation in sensed data that are related to the more permanent soil properties assume that the zones are multi-purpose. Soil properties are then often sampled on a grid to provide the average values of each property per zone. This paper examines the plausibility of this approach by examining how the number of samples taken on a grid and the application of kriging affect mean soil property values for MZs. The suitability of MZs based on ancillary data for managing several agronomically important properties simultaneously is also considered. These concepts are examined with historic soil data from four field sites in southern UK with different scales of spatial variation. Results showed that when the grid sampling interval is large, there is less difference in the means of properties between MZs, but kriging the soil data increased the differences between zones when the sampling interval was large and sample small. Sensed data are used increasingly to aid the identification of MZs, but these could not be considered multi-purpose at all sites. The MZs produced were most useful for phosphorus (P), pH and volumetric water content (VWC) at the Wallingford site and useful for most properties at the Clays and Y215 sites. For the latter site this was true only when the most dense data were used to calculate MZ averages. The results show that sampling interval for MZ averages should relate to the scale of variation or the size of the MZs at a site. The sampling density could be based on the variogram range of ancillary data. This research suggests that there should be 6–8 samples per zone to obtain accurate averages of soil properties. Nutrient data for more than one year were examined at two sites and showed that patterns remained consistent in the short term unless variable-rate management was used, but also the range of values changed in the short term.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"52 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140001123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Destructive and non-destructive measurement approaches and the application of AI models in precision agriculture: a review 精准农业中的破坏性和非破坏性测量方法以及人工智能模型的应用:综述
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2024-02-27 DOI: 10.1007/s11119-024-10112-5
Maidul Islam, Suraj Bijjahalli, Thomas Fahey, Alessandro Gardi, Roberto Sabatini, David W. Lamb
{"title":"Destructive and non-destructive measurement approaches and the application of AI models in precision agriculture: a review","authors":"Maidul Islam, Suraj Bijjahalli, Thomas Fahey, Alessandro Gardi, Roberto Sabatini, David W. Lamb","doi":"10.1007/s11119-024-10112-5","DOIUrl":"https://doi.org/10.1007/s11119-024-10112-5","url":null,"abstract":"<p>The estimation of pre-harvest fruit quality and maturity is essential for growers to determine the harvest timing, storage requirements and profitability of the crop yield. In-field fruit maturity indicators are highly variable and require high spatiotemporal resolution data, which can be obtained from contemporary precision agriculture systems. Such systems exploit various state-of-the-art sensors, increasingly relying on spectrometry and imaging techniques in association with advanced Artificial Intelligence (AI) and, in particular, Machine Learning (ML) algorithms. This article presents a critical review of precision agriculture techniques for fruit maturity estimation, with a focus on destructive and non-destructive measurement approaches, and the applications of ML in the domain. A critical analysis of the advantages and disadvantages of different techniques is conducted by surveying recent articles on non-destructive methods to discern trends in performance and applicability. Advanced data-fusion methods for combining information from multiple non-destructive sensors are increasingly being used to develop more accurate representations of fruit maturity for the entire field. This is achieved by incorporating AI algorithms, such as support vector machines, k-nearest neighbour, neural networks, and clustering. Based on an extensive survey of recently published research, the review also identifies the most effective fruit maturity indices, namely: sugar content, acidity and firmness. The review concludes by highlighting the outstanding technical challenges and identifies the most promising areas for future research. Hence, this research has the potential to provide a valuable resource for the growers, allowing them to familiarize themselves with contemporary Smart Agricultural methodologies currently in use. These practices can be gradually incorporated from their perspective, taking into account the availability of non-destructive techniques and the use of efficient fruit maturity indices.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"15 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139977029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UAV-based canopy monitoring: calibration of a multispectral sensor for green area index and nitrogen uptake across several crops 基于无人机的冠层监测:多光谱传感器对几种作物的绿地指数和氮吸收的校准
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2024-02-27 DOI: 10.1007/s11119-024-10123-2
{"title":"UAV-based canopy monitoring: calibration of a multispectral sensor for green area index and nitrogen uptake across several crops","authors":"","doi":"10.1007/s11119-024-10123-2","DOIUrl":"https://doi.org/10.1007/s11119-024-10123-2","url":null,"abstract":"<h3>Abstract</h3> <p>The fast and accurate provision of within-season data of green area index (<em>GAI</em>) and total N uptake (<em>total N</em>) is the basis for crop modeling and precision agriculture. However, due to rapid advancements in multispectral sensors and the high sampling effort, there is currently no existing reference work for the calibration of one UAV (unmanned aerial vehicle)-based multispectral sensor to <em>GAI</em> and <em>total N</em> for silage maize, winter barley, winter oilseed rape, and winter wheat.</p> <p>In this paper, a practicable calibration framework is presented. On the basis of a multi-year dataset, crop-specific models are calibrated for the UAV-based estimation of <em>GAI</em> throughout the entire growing season and of <em>total N</em> until flowering. These models demonstrate high accuracies in an independent evaluation over multiple growing seasons and trial sites (mean absolute error of 0.19–0.48 m<sup>2</sup> m<sup>−2</sup> for <em>GAI</em> and of 0.80–1.21 g m<sup>−2</sup> for <em>total N</em>). The calibration of a uniform <em>GAI</em> model does not provide convincing results. Near infrared-based ratios are identified as the most important component for all calibrations. To account for the significant changes in the <em>GAI</em>/ <em>total N</em> ratio during the vegetative phase of winter barley and winter oilseed rape, their calibrations for <em>total N</em> must include a corresponding factor. The effectiveness of the calibrations is demonstrated using three years of data from an extensive field trial. High correlation of the derived <em>total N</em> uptake until flowering and the whole-season radiation uptake with yield data underline the applicability of UAV-based crop monitoring for agricultural applications.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"40 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139987529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing Blackmore’s methodology to delineate management zones from Sentinel 2 images 推进布莱克莫尔根据哨兵 2 号图像划分管理区的方法
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2024-02-27 DOI: 10.1007/s11119-024-10115-2
Arthur Lenoir, Bertrand Vandoorne, Ali Siah, Benjamin Dumont
{"title":"Advancing Blackmore’s methodology to delineate management zones from Sentinel 2 images","authors":"Arthur Lenoir, Bertrand Vandoorne, Ali Siah, Benjamin Dumont","doi":"10.1007/s11119-024-10115-2","DOIUrl":"https://doi.org/10.1007/s11119-024-10115-2","url":null,"abstract":"<p>Improving agricultural nitrogen management is one of the key objectives of the recent Green Deal in Europe. Current technological developments in agriculture offer new opportunities to improve nitrogen fertilization practices. The aim of this study was to adapt to Sentinel-2 data a proven delineation method initially developed for yield maps, in order to facilitate precise nitrogen management by farmers. The study was conducted in two steps. Firstly, an analysis at annual level was conducted to assess the relationship between vegetation indices and yield at the subfield scale, for different sensing period. The second step consisted in performing a pluri- annual analysis through the delineation of management zones and compare the results achieved from yield maps and from NDVI maps. Among different vegetation indices, NDVI proved to be an interesting candidate for subfield detection of yield variation, specifically when the index was sensed was sensed around the second half of May. In this area, this period usually corresponds to phenological development between the flag leaf stage and heading stage, just prior the initiation of winter wheat flowering. Using NDVI maps within Blackmore’s delineation approach instead of yield maps. Allowed to reach an accuracy of 69% on zone classification. However, as yields and NDVI distribution do not respond to similar statistical distributions, we considered that the delineation threshold used to differentiate high from low yielding zones had to be adapted. The adaptation of the “performance threshold” in favor of the median NDVI, made it possible to achieve a higher accuracy (71%) of the delineation. But above all, the improvement lies also in a more robust satellite-based delineation.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"9 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139976962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of training sample size, sampling design and prediction model on soil mapping with proximal sensing data for precision liming 训练样本大小、取样设计和预测模型对利用近距离传感数据绘制精准施肥土壤图的影响
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2024-02-24 DOI: 10.1007/s11119-024-10122-3
{"title":"Effect of training sample size, sampling design and prediction model on soil mapping with proximal sensing data for precision liming","authors":"","doi":"10.1007/s11119-024-10122-3","DOIUrl":"https://doi.org/10.1007/s11119-024-10122-3","url":null,"abstract":"<h3>Abstract</h3> <p>Site-specific estimation of lime requirement requires high-resolution maps of soil organic carbon (SOC), clay and pH. These maps can be generated with digital soil mapping models fitted on covariates observed by proximal soil sensors. However, the quality of the derived maps depends on the applied methodology. We assessed the effects of (i) training sample size (5–100); (ii) sampling design (simple random sampling (SRS), conditioned Latin hypercube sampling (cLHS) and k-means sampling (KM)); and (iii) prediction model (multiple linear regression (MLR) and random forest (RF)) on the prediction performance for the above mentioned three soil properties. The case study is based on conditional geostatistical simulations using 250 soil samples from a 51 ha field in Eastern Germany. Lin’s concordance correlation coefficient (CCC) and root-mean-square error (RMSE) were used to evaluate model performances. Results show that with increasing training sample sizes, relative improvements of RMSE and CCC decreased exponentially. We found the lowest median RMSE values with 100 training observations i.e., 1.73%, 0.21% and 0.3 for clay, SOC and pH, respectively. However, already with a sample size of 10, models of moderate quality (CCC &gt; 0.65) were obtained for all three soil properties. cLHS and KM performed significantly better than SRS. MLR showed lower median RMSE values than RF for SOC and pH for smaller sample sizes, but RF outperformed MLR if at least 25–30 or 75–100 soil samples were used for SOC or pH, respectively. For clay, the median RMSE was lower with RF, regardless of sample size.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"5 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139943240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sugarcane yield estimation in Thailand at multiple scales using the integration of UAV and Sentinel-2 imagery 利用无人机和 "哨兵-2 "号卫星图像在多个尺度上估算泰国甘蔗产量
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2024-02-22 DOI: 10.1007/s11119-024-10124-1
Jaturong Som-ard, Markus Immitzer, Francesco Vuolo, Clement Atzberger
{"title":"Sugarcane yield estimation in Thailand at multiple scales using the integration of UAV and Sentinel-2 imagery","authors":"Jaturong Som-ard, Markus Immitzer, Francesco Vuolo, Clement Atzberger","doi":"10.1007/s11119-024-10124-1","DOIUrl":"https://doi.org/10.1007/s11119-024-10124-1","url":null,"abstract":"<p>Timely and accurate estimates of sugarcane yield provide valuable information for food management, bio-energy production, (inter)national trade, industry planning and government policy. Remote sensing and machine learning approaches can improve sugarcane yield estimation. Previous attempts have however often suffered from too few training samples due to the fact that field data collection is expensive and time-consuming. Our study demonstrates that unmanned aerial vehicle (UAV) data can be used to generate field-level yield data using only a limited number of field measurements. Plant height obtained from RGB UAV-images was used to train a model to derive intra-field yield maps based on 41 field sample plots spread over 20 sugarcane fields in the Udon Thani Province, Thailand. The yield maps were subsequently used as reference data to train another model to estimate yield from multi-spectral Sentinel-2 (S2) imagery. The integrated UAV yield and S2 data was found efficient with RMSE of 6.88 t/ha (per 10 m × 10 m pixel), for average yields of about 58 t/ha. The expansion of the sugarcane yield mapping across the entire region of 11,730 km<sup>2</sup> was in line with the official statistical yield data and highlighted the high spatial variability of yields, both between and within fields. The presented method is a cost-effective and high-quality yield mapping approach which provides useful information for sustainable sugarcane yield management and decision-making.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"179 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139937559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating rainfed groundnut’s leaf area index using Sentinel-2 based on Machine Learning Regression Algorithms and Empirical Models 基于机器学习回归算法和经验模型,利用哨兵 2 号估算雨浇花生的叶面积指数
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2024-02-21 DOI: 10.1007/s11119-024-10117-0
Michael Chibuike Ekwe, Oluseun Adeluyi, Jochem Verrelst, Angela Kross, Caleb Akoji Odiji
{"title":"Estimating rainfed groundnut’s leaf area index using Sentinel-2 based on Machine Learning Regression Algorithms and Empirical Models","authors":"Michael Chibuike Ekwe, Oluseun Adeluyi, Jochem Verrelst, Angela Kross, Caleb Akoji Odiji","doi":"10.1007/s11119-024-10117-0","DOIUrl":"https://doi.org/10.1007/s11119-024-10117-0","url":null,"abstract":"<p>The leaf area index (LAI), a crucial biophysical indicator, is used to assess and monitor crop growth for effective agricultural management. This study assessed the LAI at the seedling stage after conducting a field experiment with rainfed groundnut. The study tests the performance of multiple machine learning regression algorithms (MLRAs) and empirical vegetation indices (VIs) in retrieving groundnut's LAI using freely available Sentinel-2 data. The bands at 665 nm, 705 nm, 842 nm, and 2190 nm are the most sensitive for retrieving groundnut's LAI, according to an analysis of its band spectrum. Results suggest that VIs computed with wavebands centered at red (665 nm), red edge (705 nm), and near-infrared (842 nm) exhibited optimal R<sup>2</sup> with Sentinel-2 data. Normalized difference vegetation index (NDVI), red edge normalized difference vegetation index (NDVIre), simple ratio (SR), red edge simple ratio (SRre), and green normalized difference vegetation index (gNDVI) were utilized as predictors for LAI. Regarding the results of the validation between estimated and measured LAI, SR demonstrated the highest accuracy for groundnut LAI prediction (r<sup>2</sup> = 0.67, RMSE = 0.89). Ten MLRAs were tested, and results indicate from the perspective of the accuracy of models, the Gaussian processes regression, GPR (r<sup>2</sup> = 0.73 and RMSE = 0.81), Kernel ridge regression, KRR (r<sup>2</sup> = 0.72 and RMSE = 0.82) and Support vector regression, SVR (r<sup>2</sup> = 0.70 and RMSE = 0.85) demonstrated to be the most suitable for LAI estimation for rainfed groundnut at the seedling stage. The systematic analysis based on the regression approaches tested here revealed that the GPR outperformed other models combined, therefore, most suitable for estimating rainfed groundnut LAI at the seedling stage. These findings serve as a benchmark for obtaining crop biophysical parameters in the framework of groundnut traits monitoring in a tropical West Africa.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"176 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139915909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An autonomous navigation method for orchard rows based on a combination of an improved a-star algorithm and SVR 基于改进型星形算法和 SVR 组合的果园行列自主导航方法
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2024-02-20 DOI: 10.1007/s11119-024-10118-z
Minghui Wang, Jian Xu, Jin Zhang, Yongjie Cui
{"title":"An autonomous navigation method for orchard rows based on a combination of an improved a-star algorithm and SVR","authors":"Minghui Wang, Jian Xu, Jin Zhang, Yongjie Cui","doi":"10.1007/s11119-024-10118-z","DOIUrl":"https://doi.org/10.1007/s11119-024-10118-z","url":null,"abstract":"<p>Autonomous robot-based orchard operations will become an alternative solution in the field of precision agriculture. One of the keys to robotic work is to achieve autonomous navigation that is as accurate as possible to ensure the most accurate working effect. In this work, we propose an orchard path fitting and navigation method based on the fusion of improved A-Star algorithm and Support Vector Machine Regression (SVR) to meet the requirements of autonomous navigation crawler platform for autonomous navigation in orchard environment and ensure accuracy. In this study, the actual speed and turning radius of the left and right tracks of the crawler platform were collected under 5 different slopes and 400 sets of different theoretical speed combinations of left and right tracks through the design nesting test, and the motion model of the crawler platform was constructed based on SVR. Orchard point cloud data were obtained by 3D solid-state LiDAR, and the improved A-star algorithm was used to fit the navigation path and calculate the turning curvature radius. Taking this curvature radius as the optimal navigation target value, the motion model predicts the optimal theoretical speed of left and right tracks, which is used as a reference for autonomous navigation. The comparison experiment of autonomous navigation was carried out in two modes: traditional and improved A-Star algorithm. The results show that the average values of the maximum lateral and longitudinal deviation of the improved automatic navigation method between orchards row are 6.90 cm and 9.88 cm, respectively. Compared with the method combined with the traditional A-Star algorithm and SVR, the values were 8.94 cm and 10.88 cm and were optimized by 29.57% and 10.12%, respectively. The autonomous navigation method proposed in this paper can meet the needs of orchards rows autonomous navigation, and can be widely applied to different orchard site environments (slope, ground obstacles, bad surface conditions), which can provide reference for the production practices of unmanned orchards.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"13 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139915911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What if precision agriculture is not profitable?: A comprehensive analysis of the right timing for exiting, taking into account different entry options 如果精准农业无利可图怎么办?考虑到不同的进入方案,全面分析退出的正确时机
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2024-02-17 DOI: 10.1007/s11119-024-10111-6
Johannes Munz
{"title":"What if precision agriculture is not profitable?: A comprehensive analysis of the right timing for exiting, taking into account different entry options","authors":"Johannes Munz","doi":"10.1007/s11119-024-10111-6","DOIUrl":"https://doi.org/10.1007/s11119-024-10111-6","url":null,"abstract":"<p>The digitization of agriculture is widely discussed today. But despite proven benefits, its acceptance in agricultural practice remains low. In small-structured areas, this trend is even more pronounced. There are even known cases where farmers initially purchased and used technology, but then stopped using it due to lack of profitability or other reasons. Interestingly, despite extensive research on precision agriculture technologies (PATs), the processes of adoption and phase-out with their associated economic impacts have never been studied. This paper provides a methodological framework for evaluating the economics of PAT deployment, taking into account changes during the period of use; the framework provides decision rules for determining the appropriate time to phase out technology. Using a selected PAT, a farm model, and defined entry and exit scenarios, it was shown that farms with outdated technology and farms with retrofittable technology are at a significant economic disadvantage during implementation compared to farms already using technology suitable for site-specific fertilization or farms relying on the use of a contractor. And even in the event of a phase-out, the two disadvantaged starting conditions face significantly greater uncertainties and costs. Moreover, the decision to phase out in time is difficult, as making an informed and fact-based decision is not possible after the first year of use. Therefore, it is advisable that farmers are not only accompanied before and during phase-in, but also receive professional support during use.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"6 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139898761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using mid-infrared spectroscopy as a tool to monitor responses of acidic soil properties to liming: case study from a dryland agricultural soil trial site in South Australia 利用中红外光谱监测酸性土壤性质对石灰化的反应:南澳大利亚一个旱地农业土壤试验场的案例研究
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2024-02-12 DOI: 10.1007/s11119-024-10114-3
Ruby Hume, Petra Marschner, Sean Mason, Rhiannon K. Schilling, Luke M. Mosley
{"title":"Using mid-infrared spectroscopy as a tool to monitor responses of acidic soil properties to liming: case study from a dryland agricultural soil trial site in South Australia","authors":"Ruby Hume, Petra Marschner, Sean Mason, Rhiannon K. Schilling, Luke M. Mosley","doi":"10.1007/s11119-024-10114-3","DOIUrl":"https://doi.org/10.1007/s11119-024-10114-3","url":null,"abstract":"<p>Soil acidification is an issue for agriculture that requires effective management, typically in the form of lime (calcium carbonate, CaCO<sub>3</sub>), application. Mid infrared (MIR) spectroscopy methods offer an alternative to conventional laboratory methods, that may enable cost-effective and improved measurement of soil acidity and responses to liming, including detection of small–scale heterogeneity through the profile. Properties of an acidic soil following lime application were measured using both MIR spectroscopy with Partial Least Squares Regression (MIR-PLSR) and laboratory measurements to (a) compare the ability of each method to detect lime treatment effects on acidic soil, and (b) assess effects of the different treatments on selected soil properties. Soil properties including soil pH (in H<sub>2</sub>O and CaCl<sub>2</sub>), Aluminium (Al, exchangeable and extractable), cation exchange capacity (CEC) and organic carbon (OC) were measured at a single field trial receiving lime treatments differing in rate, source and incorporation. Model performance of MIR-PLSR prediction of the soil properties ranged from R<sup>2</sup> = 0.582, RMSE = 2.023, RPIQ = 2.921 for Al (extractable) to R<sup>2</sup> = 0.881, RMSE = 0.192, RPIQ = 5.729 for OC. MIR-PLSR predictions for pH (in H<sub>2</sub>O and CaCl<sub>2</sub>) were R<sup>2</sup> = 0.739, RMSE = 0.287, RPIQ = 2.230 and R<sup>2</sup> = 0.788, RMSE = 0.311, RPIQ = 1.897 respectively, and could detect a similar treatment effect compared to laboratory measurements. Treatment effects were not detected for MIR-PLSR-predicted values of CEC and both exchangeable and extractable Al. Findings support MIR-PLSR as a method of measuring soil pH to monitor effects of liming treatments on acidic soil to help inform precision agricultural management strategies, but suggests that some nuance and important information about treatment effects of lime on CEC and Al may be lost. Improvements to prediction model performance should be made to realise the full potential of this approach.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"31 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139727962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信