Shezhou Luo, Weiwei Liu, Qian Ren, Hanquan Wei, Cheng Wang, Xiaohuan Xi, Sheng Nie, Dong Li, Dan Ma, Guoqing Zhou
{"title":"利用无人机激光雷达数据估算玉米和大豆的叶面积指数","authors":"Shezhou Luo, Weiwei Liu, Qian Ren, Hanquan Wei, Cheng Wang, Xiaohuan Xi, Sheng Nie, Dong Li, Dan Ma, Guoqing Zhou","doi":"10.1007/s11119-024-10146-9","DOIUrl":null,"url":null,"abstract":"<p>Leaf area index (LAI) is a vital input variable for crop growth and yield prediction models. Therefore, rapid and accurate crop LAI estimates can offer important information for monitoring and managing the quantity and quality of food production. Here, LAI values of maize and soybean were predicted applying height metrics and intensity metrics calculated through unmanned aerial vehicle (UAV) LiDAR data. Moreover, we compared the prediction performance of physical model with that of empirical model for estimating crop LAI. The physical model based on Beer–Lambert law yielded reliable estimation results using LiDAR height data (maize: R<sup>2</sup> = 0.815, RMSE = 0.385; soybean: R<sup>2</sup> = 0.627, RMSE = 0.515) and LiDAR intensity data (maize: R<sup>2</sup> = 0.719, RMSE = 0.474; soybean: R<sup>2</sup> = 0.548, RMSE = 0.567). However, the linear regression model obtained a higher estimation accuracy. The single linear regression model derived from LiDAR height data had an R<sup>2</sup> value of 0.837 (RMSE = 0.361) for maize and 0.658 (RMSE = 0.493) for soybean, and derived from LiDAR intensity data had an R<sup>2</sup> value of 0.749 (RMSE = 0.448) for maize and 0.460 (RMSE = 0.619) for soybean, respectively. We found that the random forest (RF) regression model yielded the lowest estimation accuracy in this study. Moreover, the RF regression model in our study was not able to reliably estimate soybean LAI whether using LiDAR height metrics (R<sup>2</sup> = 0.294) or intensity metrics (R<sup>2</sup> = 0.180). Our results show that both LiDAR intensity and height metrics are capable of reliably predicting maize and soybean LAIs, although LiDAR intensity data yielded lower estimation accuracy than LiDAR height data. In conclusion, the results presented in this study demonstrate that using UAV-LiDAR technology to predict crop LAI is a flexible, practical, and cost-effective method.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"44 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leaf area index estimation in maize and soybean using UAV LiDAR data\",\"authors\":\"Shezhou Luo, Weiwei Liu, Qian Ren, Hanquan Wei, Cheng Wang, Xiaohuan Xi, Sheng Nie, Dong Li, Dan Ma, Guoqing Zhou\",\"doi\":\"10.1007/s11119-024-10146-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Leaf area index (LAI) is a vital input variable for crop growth and yield prediction models. Therefore, rapid and accurate crop LAI estimates can offer important information for monitoring and managing the quantity and quality of food production. Here, LAI values of maize and soybean were predicted applying height metrics and intensity metrics calculated through unmanned aerial vehicle (UAV) LiDAR data. Moreover, we compared the prediction performance of physical model with that of empirical model for estimating crop LAI. The physical model based on Beer–Lambert law yielded reliable estimation results using LiDAR height data (maize: R<sup>2</sup> = 0.815, RMSE = 0.385; soybean: R<sup>2</sup> = 0.627, RMSE = 0.515) and LiDAR intensity data (maize: R<sup>2</sup> = 0.719, RMSE = 0.474; soybean: R<sup>2</sup> = 0.548, RMSE = 0.567). However, the linear regression model obtained a higher estimation accuracy. The single linear regression model derived from LiDAR height data had an R<sup>2</sup> value of 0.837 (RMSE = 0.361) for maize and 0.658 (RMSE = 0.493) for soybean, and derived from LiDAR intensity data had an R<sup>2</sup> value of 0.749 (RMSE = 0.448) for maize and 0.460 (RMSE = 0.619) for soybean, respectively. We found that the random forest (RF) regression model yielded the lowest estimation accuracy in this study. Moreover, the RF regression model in our study was not able to reliably estimate soybean LAI whether using LiDAR height metrics (R<sup>2</sup> = 0.294) or intensity metrics (R<sup>2</sup> = 0.180). Our results show that both LiDAR intensity and height metrics are capable of reliably predicting maize and soybean LAIs, although LiDAR intensity data yielded lower estimation accuracy than LiDAR height data. In conclusion, the results presented in this study demonstrate that using UAV-LiDAR technology to predict crop LAI is a flexible, practical, and cost-effective method.</p>\",\"PeriodicalId\":20423,\"journal\":{\"name\":\"Precision Agriculture\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11119-024-10146-9\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10146-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Leaf area index estimation in maize and soybean using UAV LiDAR data
Leaf area index (LAI) is a vital input variable for crop growth and yield prediction models. Therefore, rapid and accurate crop LAI estimates can offer important information for monitoring and managing the quantity and quality of food production. Here, LAI values of maize and soybean were predicted applying height metrics and intensity metrics calculated through unmanned aerial vehicle (UAV) LiDAR data. Moreover, we compared the prediction performance of physical model with that of empirical model for estimating crop LAI. The physical model based on Beer–Lambert law yielded reliable estimation results using LiDAR height data (maize: R2 = 0.815, RMSE = 0.385; soybean: R2 = 0.627, RMSE = 0.515) and LiDAR intensity data (maize: R2 = 0.719, RMSE = 0.474; soybean: R2 = 0.548, RMSE = 0.567). However, the linear regression model obtained a higher estimation accuracy. The single linear regression model derived from LiDAR height data had an R2 value of 0.837 (RMSE = 0.361) for maize and 0.658 (RMSE = 0.493) for soybean, and derived from LiDAR intensity data had an R2 value of 0.749 (RMSE = 0.448) for maize and 0.460 (RMSE = 0.619) for soybean, respectively. We found that the random forest (RF) regression model yielded the lowest estimation accuracy in this study. Moreover, the RF regression model in our study was not able to reliably estimate soybean LAI whether using LiDAR height metrics (R2 = 0.294) or intensity metrics (R2 = 0.180). Our results show that both LiDAR intensity and height metrics are capable of reliably predicting maize and soybean LAIs, although LiDAR intensity data yielded lower estimation accuracy than LiDAR height data. In conclusion, the results presented in this study demonstrate that using UAV-LiDAR technology to predict crop LAI is a flexible, practical, and cost-effective method.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.