Precision Agriculture最新文献

筛选
英文 中文
Forecasting field rice grain moisture content using Sentinel-2 and weather data
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2025-01-31 DOI: 10.1007/s11119-025-10228-2
James Brinkhoff, Brian W. Dunn, Tina Dunn, Alex Schultz, Josh Hart
{"title":"Forecasting field rice grain moisture content using Sentinel-2 and weather data","authors":"James Brinkhoff, Brian W. Dunn, Tina Dunn, Alex Schultz, Josh Hart","doi":"10.1007/s11119-025-10228-2","DOIUrl":"https://doi.org/10.1007/s11119-025-10228-2","url":null,"abstract":"<p>Optimizing the timing of rice paddy drainage and harvest is crucial for maximizing yield and quality. These decisions are guided by rice grain moisture content (GMC), which is typically determined by destructive plant samples taken at point locations. Providing rice farmers with predictions of GMC will reduce the time burden of gathering, threshing and testing samples. Additionally, it will reduce errors due to samples being taken from unrepresentative areas of fields, and will facilitate advanced planning of end-of-season drain and harvest timing. This work demonstrates consistent relationships between rice GMC and indices derived from Sentinel-2 satellite imagery, particularly those involving selected shortwave infrared and red edge bands (r=0.84, 1620 field samples, 3 years). A methodology was developed to allow forecasts of grain moisture past the latest image date to be provided, by fusing remote sensing and accumulated weather data as inputs to machine learning models. The moisture content predictions had root mean squared error between 1.6 and 2.6% and <span>(hbox {R}^2)</span> of 0.7 with forecast horizons from 0 to 28 days. Time-series grain moisture dry-down predictions were summarized per field to find the optimal harvest date (22% grain moisture), with an average RMSE around 6.5 days. The developed methodology was operationalized to provide rice growers with current and projected grain moisture, enabling data-driven decisions, ultimately enhancing operational efficiency and crop outcomes.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"10 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143071992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly efficient wheat lodging extraction algorithm based on two-peak search algorithm
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2025-01-29 DOI: 10.1007/s11119-025-10223-7
Xiuyu Liu, Jinshui Zhang, Xuehua Li, Kejian Shen, Shuang Zhu, Zhihua Liang
{"title":"Highly efficient wheat lodging extraction algorithm based on two-peak search algorithm","authors":"Xiuyu Liu, Jinshui Zhang, Xuehua Li, Kejian Shen, Shuang Zhu, Zhihua Liang","doi":"10.1007/s11119-025-10223-7","DOIUrl":"https://doi.org/10.1007/s11119-025-10223-7","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Extracting the extent of wheat lodging is essential for post-disaster emergency response, disaster assessment, and accurate agricultural insurance claims. However, traditional methods for identifying lodged crops often lack flexibility, exhibit low levels of automation, and suffer from inefficiency.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>This study proposes a rapid identification algorithm for wheat lodging, utilizing adaptive thresholding and a two-peak search of UAV imagery for reliable extraction of lodging regions. Initially, the red, green, and blue (RGB) visible band characteristics of UAV images after wheat lodging are analyzed. Subsequently, an Enhanced Wheat Lodging Index (EWLI) is proposed to quantitatively represent the lodging state. Second, a two-peak search dynamic thresholding algorithm, based on the square chunking of wheat lodging, is proposed to automatically determine thresholds for extracting winter wheat lodging regions.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Experimental results demonstrate that the Enhanced Wheat Lodging Index (EWLI) effectively represents wheat lodging, while the two-peak search dynamic thresholding algorithm achieves robust performance. The proposed method achieves an overall accuracy of 96%, an F1 score of 0.97, and a Kappa coefficient exceeding 0.95, surpassing the performance of the OTSU method (maximum inter-class variance) and the KSW method (maximum entropy) with global thresholding.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The proposed method is applicable to diverse wheat lodging scenarios and demonstrates robust stability in identification accuracy. Key advantages include lightweight modeling, adaptive threshold determination, and the elimination of human intervention, making it an efficient, reliable, and highly practical approach for wheat lodging monitoring.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"20 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting spatial variation in wild blueberry water stress using UAV-borne thermal imagery: distinct temporal and reference temperature effects
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2025-01-28 DOI: 10.1007/s11119-024-10216-y
Kallol Barai, Matthew Wallhead, Bruce Hall, Parinaz Rahimzadeh-Bajgiran, Jose Meireles, Ittai Herrmann, Yong-Jiang Zhang
{"title":"Detecting spatial variation in wild blueberry water stress using UAV-borne thermal imagery: distinct temporal and reference temperature effects","authors":"Kallol Barai, Matthew Wallhead, Bruce Hall, Parinaz Rahimzadeh-Bajgiran, Jose Meireles, Ittai Herrmann, Yong-Jiang Zhang","doi":"10.1007/s11119-024-10216-y","DOIUrl":"https://doi.org/10.1007/s11119-024-10216-y","url":null,"abstract":"<p>The use of thermal-based crop water stress index (CWSI) has been studied in many crops in semi-arid regions and found as an effective method in detecting real-time crop water status of commercial fields remotely and non-destructively. However, to our knowledge, no previous studies have validated the usefulness of CWSI in a temperate crop like wild blueberries. Additionally, the temporal changes of the water status estimation model has not been well-studied. In this multi-year study, Unoccupied Aerial Vehicle (UAV)-borne thermal imageries were collected in 2019, 2020, and 2021 to test the temporal effects and the impact of different approach-based reference temperatures (T<sub><i>wet</i></sub>, wet reference temperature; T<sub><i>dry</i></sub>, dry reference temperature) on leaf water potential (LWP) estimation models using CWSI in two large adjacent wild blueberry fields in Maine, United States. We found that different sampling dates have a significant impact on LWP estimation models using CWSI<sub>SE</sub> (statistical T<sub><i>wet</i></sub> and empirical T<sub><i>dry</i></sub> reference) and CWSI<sub>SS</sub> (statistical T<sub><i>wet</i></sub> and statistical T<sub><i>dry</i></sub> reference). Further, CWSI<sub>BB</sub> calculated with bio-indicator-based T<sub><i>wet</i></sub> and T<sub><i>dry</i></sub> reference was found more effective (<i>r</i>² = 0.79<i>)</i> in estimating LWP in 2021, compared to the CWSI<sub>SE</sub> and CWSI<sub>SS</sub> approaches in 2019 (<i>r</i>² = 0.34 &amp; <i>r</i>² = 0.36), 2020 (<i>r</i>² = 0.38 &amp; <i>r</i>² = 0.44) and 2021 (<i>r</i>² = 0.43 &amp; <i>r</i>² = 0.46). CWSI<sub>BB</sub> -LWP model-based crop water status maps show high variation in the crop water status of wild blueberries, even in an evenly irrigated field, suggesting the potential of UAV-borne thermal cameras to detect real-time crop water status within the field, with the CWSI<sub>BB</sub> calculated from bio-indicator-based references being more reliable. Our results could be used for precision irrigation to increase the overall water use efficiency and profitability of wild blueberry production.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"47 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability maps using historical NDVI images on durum wheat to understand the causes of spatial variability
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2025-01-28 DOI: 10.1007/s11119-025-10222-8
E. Romano, F. Fania, I. Pecorella, P. Spadanuda, M. Roncetti, D. Zullo, G. Giuntoli, C. Bisaglia, A. Bragaglio, S. Bergonzoli, P. De Vita
{"title":"Stability maps using historical NDVI images on durum wheat to understand the causes of spatial variability","authors":"E. Romano, F. Fania, I. Pecorella, P. Spadanuda, M. Roncetti, D. Zullo, G. Giuntoli, C. Bisaglia, A. Bragaglio, S. Bergonzoli, P. De Vita","doi":"10.1007/s11119-025-10222-8","DOIUrl":"https://doi.org/10.1007/s11119-025-10222-8","url":null,"abstract":"<p>Durum wheat (<i>Triticum durum</i> Desf.) yield should be maximized to meet the growing global demand for pasta production. Precision agriculture (PA) could play a pivotal role in reaching this goal by correctly defining management zones (MZ) and optimizing the use of energy inputs. The aim of the work was to understand the relationship between MZ generated from observed yield data and those generated using a time series of Sentinel-derived vegetation indices (i.e. NDVI) obtained from satellite images and soil properties. For this purpose, two field trials of 10 ha each, cultivated with durum wheat, were carried out in Southern Italy. The results suggested a better strategy for defining MZs by merging soil characteristics and temporal NDVI stability maps. The on-the-go technology used for soil resistivity mapping also represented an excellent tool for delineating stable and homogeneous areas within the fields and estimating soil properties. In particular, the soil clay content had a determining effect on the identification of homogeneous yield areas. However, the integration of historical NDVI data helped delineate MZs within each field. To validate this hypothesis, we integrated soil and NDVI data into a linear predictive model to predict grain yield at the field level. Our findings showed a good level of accuracy and a significant improvement in yield simulated values by combining soil with crop data (R<sup>2</sup> = 0.620; RMSE = 0.425). Further studies are needed to explore the potential of NDVI stability maps into a linear predictive model to predict grain yield at the field level.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"19 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Joint plant-spraypoint detector with ConvNeXt modules and HistMatch normalization 采用ConvNeXt模块和HistMatch归一化的植物-喷雾点联合检测器
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2025-01-22 DOI: 10.1007/s11119-024-10208-y
Jonathan Ford, Edmund Sadgrove, David Paul
{"title":"Joint plant-spraypoint detector with ConvNeXt modules and HistMatch normalization","authors":"Jonathan Ford, Edmund Sadgrove, David Paul","doi":"10.1007/s11119-024-10208-y","DOIUrl":"https://doi.org/10.1007/s11119-024-10208-y","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Context</h3><p>Serrated tussock (<i>Nassella trichotoma</i>) is a weed of national significance in Australia which offers little to no nutritional value to livestock, and has the potential to reduce carrying capacity and agricultural return of infested pastures.</p><h3 data-test=\"abstract-sub-heading\">Aims</h3><p>The aim of this study was to adapt existing Convolutional Neural Networks (CNNs) for plant segmentation and spraypoint detection in the challenging environments of pastures.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>CNNs that were designed for joint plant and stem segmentation in crop fields were repurposed for dual-task applications in pastures. Given the poor performance of these models in complex pasture environments, a new model drawing inspiration from the recently proposed ConvNeXt was developed, tested for its effectiveness on unseen field data, and enhanced with a novel normalization technique, called HistMatch.</p><h3 data-test=\"abstract-sub-heading\">Key results</h3><p>Experimentation demonstrated that unlike pre-existing models, which were designed for the simpler environments encountered in early-stage crop fields, our model was able to generalize well to growing conditions not seen during training, achieving 0.807 mIoU and 0.796 F1-score for the plant and spraypoint tasks respectively. This is in comparison to pre-existing models, which achieved 0.270 - 0.454 mIoU and 0.073 - 0.496 F1-score for the same tasks. These results were further improved to 0.854 mIoU and 0.806 F1-score using HistMatch normalization. In spite of greater model complexity, our model had a inference time of 15.7 ms which was comparable to pre-existing models, and suitable for real-time applications.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Models with greater complexity are required for the relatively complex environments encountered in pastures, but this greater complexity need not come at the expense of real time capability. HistMatch normalization can improve model accuracy, and is particularly effective in cases where models are struggling to generalize well to testing conditions that vary significantly from those seen during training.</p><h3 data-test=\"abstract-sub-heading\">Implications and impacts</h3><p>The successful adaptation and improvement of CNNs for weed management in pastures could significantly reduce the reliance on blanket herbicide application. HistMatch normalization could also be considered for other agricultural applications, including weed management and disease detection in crop fields and orchards.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"32 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field validation of a variable rate application sprayer equipped with ultrasonic sensors in apple tree plantations 配备超声波传感器的可变速率喷雾器在苹果树种植园的田间验证
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2025-01-22 DOI: 10.1007/s11119-024-10201-5
Bernat Salas, Ramón Salcedo, Francisco Garcia-Ruiz, Emilio Gil
{"title":"Field validation of a variable rate application sprayer equipped with ultrasonic sensors in apple tree plantations","authors":"Bernat Salas, Ramón Salcedo, Francisco Garcia-Ruiz, Emilio Gil","doi":"10.1007/s11119-024-10201-5","DOIUrl":"https://doi.org/10.1007/s11119-024-10201-5","url":null,"abstract":"<p>In recent years, there has been a significant progress in technologies used in 3D crop spraying. The inherent goal of applying these technologies has been to reduce drift, improve efficacy in the use of Plant Protection Products (PPP) and, consequently, reduce the amount of chemicals in fruit production, thus minimizing environmental impact and enhancing human health. In order to assess the study of this impact, deposition trials were conducted in an apple orchard at two different growth stages (BBCH72 and BBCH99). Three typical sprayers were used to perform these trials: the reference sprayer, representing the most popular one used by local farmers; the Best Management Practices (BMP) sprayer, symbolizing well-adjusted equipment according the target; and the VRA sprayer, a newly developed machine provided with ultrasonic sensors and the corresponding developed hardware to achieve an on-line pesticide rate adaption, according to the canopy dimensions. This VRA sprayer has been developed within OPTIMA H2020 EU project (www.optima-h2020.eu). The VRA sprayer effectively achieved similar or better values of deposition and coverage in the whole canopy target, using up to 35% less PPP rate, compared to the reference sprayer. Additionally, the developed VRA machine has demonstrated its ability to adapt the applied PPP rate to fundamental canopy parameters such as width and density, allowing to implement alternative pesticide rates, based on canopy characteristics (i.e. Leaf Wall Area), as a new method proposed by European and Mediterranean Plant Protection Organization (EPPO).</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"32 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced visual detection of litchi fruit in complex natural environments based on unmanned aerial vehicle (UAV) remote sensing 基于无人机(UAV)遥感的复杂自然环境荔枝果视觉检测增强
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2025-01-22 DOI: 10.1007/s11119-025-10220-w
Changjiang Liang, Juntao Liang, Weiguang Yang, Weiyi Ge, Jing Zhao, Zhaorong Li, Shudai Bai, Jiawen Fan, Yubin Lan, Yongbing Long
{"title":"Enhanced visual detection of litchi fruit in complex natural environments based on unmanned aerial vehicle (UAV) remote sensing","authors":"Changjiang Liang, Juntao Liang, Weiguang Yang, Weiyi Ge, Jing Zhao, Zhaorong Li, Shudai Bai, Jiawen Fan, Yubin Lan, Yongbing Long","doi":"10.1007/s11119-025-10220-w","DOIUrl":"https://doi.org/10.1007/s11119-025-10220-w","url":null,"abstract":"<p>Rapid and accurate detection of fruits is crucial for estimating yields and making scientific decisions in litchi orchards. However, litchis grow in complex natural environments, characterized by variable lighting, severe occlusion from branches and leaves, small fruit sizes, and dense overlapping, all of which pose significant challenges for accurate detection. This paper addressed this problem by proposing a method that combines unmanned aerial vehicle (UAV) remote sensing and deep learning for litchi detection. A remote sensing image dataset comprising litchi fruit was first constructed. Subsequently, an improved algorithm, YOLOv7-MSRSF, was developed. Experimental results demonstrated that YOLOv7-MSRSF’s mean average precision (mAP) reached 96.1%, outperforming YOLOv7 and pure transformer algorithms by 3.7% and 20.6%, respectively. Tests on randomly selected 24 images demonstrated that integrating the Swin-transformer module into YOLOv7 improved litchi fruit detection accuracy under severe occlusion, dense overlapping, and variable lighting by 19.55%, 6.63%, and 13.94%, respectively. YOLOv7-MSRSF showed further improvements in these three complex conditions, with detection accuracy increasing by 26.99%, 9.82%, and 18.68%, respectively, reaching 89.16%, 97.79%, and 95.56%. Furthermore, the Real-ESRGAN algorithm significantly enhanced the YOLOv7-MSRSF model’s recognition accuracy of objects in low-resolution images captured by high-altitude drones. The average detected accuracy of three images collected at 27.5 m above the canopy reached a high value of 82.2%, which was improved by 70.6% compared with that (11.6%) before super-resolution processing. The proposed method offered valuable guidance for detecting small, dense agricultural objects in large-scale, complex natural environments.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"57 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Management zones delineation: a proposal to overcome the crop-pasture rotation challenge 管理区划定:克服作物-牧场轮作挑战的建议
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2025-01-07 DOI: 10.1007/s11119-024-10214-0
Henrique Oldoni, Paulo S. G. Magalhães, Agda L. G. Oliveira, Joaquim P. Lima, Gleyce K. D. A. Figueiredo, Edemar Moro, Lucas R. Amaral
{"title":"Management zones delineation: a proposal to overcome the crop-pasture rotation challenge","authors":"Henrique Oldoni, Paulo S. G. Magalhães, Agda L. G. Oliveira, Joaquim P. Lima, Gleyce K. D. A. Figueiredo, Edemar Moro, Lucas R. Amaral","doi":"10.1007/s11119-024-10214-0","DOIUrl":"https://doi.org/10.1007/s11119-024-10214-0","url":null,"abstract":"<p>Few strategies have been developed to effectively delineate management zones (MZs) in crop-pasture rotation (CPR) systems that accommodate site-specific management for multiple crops using a single map. This study aimed to propose and evaluate several feature selection approaches that account for multiple crops in CPR systems and propose a framework for MZ delineation in CPR systems that results in a single MZ map. The feature selection approaches were based on the spatial correlation between attributes (soil, crops, and terrain attributes) and yield variables (grain and pasture yield, spatial trend of yield, and yield temporal stability). This study was conducted in an area with an integrated crop-livestock system, featuring the CPR of soybean and pasture. The results showed that the approach based on yield temporal stability was the most effective for selecting relevant attributes used in the MZ delineation in CPR systems, resulting in greater differentiation among MZs. A higher number of MZs was needed (four zones), emphasizing the importance of carefully selecting the number based on variance reduction and yield differences to ensure that the final MZ map reflects the variability across all crops and guides their integrated management. The proposed framework is one of the first to use yield temporal stability for feature selection specifically aimed at delineating MZs in CPR systems. This approach improves the ability to select significant attributes used in the MZs delineation process, providing a better solution for improving input use efficiency and maximizing grain and pasture yield in integrated farming systems.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"5 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing model performance through date fusion in multispectral and RGB image-based field phenotyping of wheat grain yield 基于多光谱和RGB图像的小麦籽粒产量田间表型数据融合提高模型性能
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2025-01-07 DOI: 10.1007/s11119-024-10211-3
Paul Heinemann, Lukas Prey, Anja Hanemann, Ludwig Ramgraber, Johannes Seidl-Schulz, Patrick Ole Noack
{"title":"Enhancing model performance through date fusion in multispectral and RGB image-based field phenotyping of wheat grain yield","authors":"Paul Heinemann, Lukas Prey, Anja Hanemann, Ludwig Ramgraber, Johannes Seidl-Schulz, Patrick Ole Noack","doi":"10.1007/s11119-024-10211-3","DOIUrl":"https://doi.org/10.1007/s11119-024-10211-3","url":null,"abstract":"<p>Assessing the grain yield of wheat remains a great challenge in field breeding trials.</p>\u0000<p>Multispectral and RGB images acquired by UAVs offer a promising tool for in-season prediction yet with varying results during the growing season.</p>\u0000<p>Therefore, enhancing prediction accuracy through optimizing multi-date models seems necessary but needs to be weighted with time and costs.</p>\u0000<p>Multi-date models outperform single-date models, with repeated data collection during the grain-filling phase being most effective.</p>\u0000<p>RGB indices can compete with multispectral indices.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"42 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142934939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Delineation of management zones dealing with low sampling and outliers 描述处理低采样和异常值的管理区
IF 6.2 2区 农林科学
Precision Agriculture Pub Date : 2025-01-06 DOI: 10.1007/s11119-024-10218-w
Cesar de Oliveira Ferreira Silva, Celia Regina Grego, Rodrigo Lilla Manzione, Stanley Robson de Medeiros Oliveira, Gustavo Costa Rodrigues, Cristina Aparecida Gonçalves Rodrigues
{"title":"Delineation of management zones dealing with low sampling and outliers","authors":"Cesar de Oliveira Ferreira Silva, Celia Regina Grego, Rodrigo Lilla Manzione, Stanley Robson de Medeiros Oliveira, Gustavo Costa Rodrigues, Cristina Aparecida Gonçalves Rodrigues","doi":"10.1007/s11119-024-10218-w","DOIUrl":"https://doi.org/10.1007/s11119-024-10218-w","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Management zones (MZs) are the subdivision of a field into a few contiguous homogeneous zones to guide variable-rate application. Delineating MZs can be based on geostatistical or clustering approaches, however, the joint use of these approaches is not usual. Here, we show a joint use of both techniques. The objective of this manuscript is twofold: (1) compare different procedures for creating management zones and (2) determine the relation of the MZs delineated with i) coffee yield maps and ii) the summarizing power of each method for each input variable inside the MZs delineated.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The techniques compared to summary spatial data were: (1) summarizing the variables into a soil fertility index (SFI), (2) the MULTISPATI-PCA technique, and (3) the multivariate Min/Max autocorrelation factors (MAF) approach. Then, clustering methods were applied to perform field partition into binary MZs (grouping lower and higher values of input variables).</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>The MAF approach achieved the best field partition regarding clustering metrics (McNemar’s test, Silhouette Score Coefficient, and variance reduction). In this paper we did not use yields as a cluster variable but as a measure of success. MAF also was the best one for separating low- from high-yielding areas over the MZs. The results show that the proposed approach could be effectively used for management zone delineation.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This methodology facilitates evaluating innovative approaches in challenging spatial modeling scenarios, such as low-sampled fields with outliers. A wide range of summarization methods and clustering techniques are available, making this agnostic approach quite interesting for delivering MZ maps. This flexible approach can guide precision nutrient management in low-sampled areas, allowing the joint use of data science tools and agronomical knowledge to delineate variable rate application strategies.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"21 1","pages":""},"PeriodicalIF":6.2,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142935035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信