Alicia Allmendinger, Ahmet Oğuz Saltık, Gerassimos G. Peteinatos, Anthony Stein, Roland Gerhards
{"title":"Assessing the capability of YOLO- and transformer-based object detectors for real-time weed detection","authors":"Alicia Allmendinger, Ahmet Oğuz Saltık, Gerassimos G. Peteinatos, Anthony Stein, Roland Gerhards","doi":"10.1007/s11119-025-10246-0","DOIUrl":null,"url":null,"abstract":"<p>Spot spraying represents an efficient and sustainable method for reducing herbicide use in agriculture. Reliable differentiation between crops and weeds, including species-level classification, is essential for real-time application. This study compares state-of-the-art object detection models-YOLOv8, YOLOv9, YOLOv10, and RT-DETR-using 5611 images from 16 plant species. Two datasets were created, dataset 1 with training all 16 species individually and dataset 2 with grouping weeds into monocotyledonous weeds, dicotyledonous weeds, and three chosen crops. Results indicate that all models perform similarly, but YOLOv9s and YOLOv9e, exhibit strong recall (66.58 % and 72.36 %) and mAP50 (73.52 % and 79.86 %), and mAP50-95 (43.82 % and 47.00 %) in dataset 2. RT-DETR-l, excels in precision reaching 82.44 % (dataset 1) and 81.46 % (dataset 2) making it ideal for minimizing false positives. In dataset 2, YOLOv9c attains a precision of 84.76% for dicots and 78.22% recall for <i>Zea mays</i> L.. Inference times highlight smaller YOLO models (YOLOv8n, YOLOv9t, and YOLOv10n) as the fastest, reaching 7.64 ms (dataset 1) on an NVIDIA GeForce RTX 4090 GPU, with CPU inference times increasing significantly. These findings emphasize the trade-off between model size, accuracy, and hardware suitability for real-time agricultural applications.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"32 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10246-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spot spraying represents an efficient and sustainable method for reducing herbicide use in agriculture. Reliable differentiation between crops and weeds, including species-level classification, is essential for real-time application. This study compares state-of-the-art object detection models-YOLOv8, YOLOv9, YOLOv10, and RT-DETR-using 5611 images from 16 plant species. Two datasets were created, dataset 1 with training all 16 species individually and dataset 2 with grouping weeds into monocotyledonous weeds, dicotyledonous weeds, and three chosen crops. Results indicate that all models perform similarly, but YOLOv9s and YOLOv9e, exhibit strong recall (66.58 % and 72.36 %) and mAP50 (73.52 % and 79.86 %), and mAP50-95 (43.82 % and 47.00 %) in dataset 2. RT-DETR-l, excels in precision reaching 82.44 % (dataset 1) and 81.46 % (dataset 2) making it ideal for minimizing false positives. In dataset 2, YOLOv9c attains a precision of 84.76% for dicots and 78.22% recall for Zea mays L.. Inference times highlight smaller YOLO models (YOLOv8n, YOLOv9t, and YOLOv10n) as the fastest, reaching 7.64 ms (dataset 1) on an NVIDIA GeForce RTX 4090 GPU, with CPU inference times increasing significantly. These findings emphasize the trade-off between model size, accuracy, and hardware suitability for real-time agricultural applications.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.